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Abstract: Relationships between forest cover and streamflow have been studied worldwide, but only
a few studies have examined how gradual changes in forest structure and species composition due
to logging and climate change affect watershed water yield (Q) and flow regimes. In this study,
we analyzed long-term (45 years) hydrologic, climate and forest dynamics data from the subboreal
Tahe watershed in northeastern China. Our purpose was to evaluate the effects of forest logging and
regeneration on changes in forest biomass and species and to quantify the subsequent impact on mean
annual streamflow and flow regime under a changing climate. The study watershed was dominated
by old-growth larch (Larix gmelinii Rupr.) during the 1970s, but gradually transformed into young
deciduous larch mixed with deciduous broad-leaved birch (Betula platyphylla Sukaczev) during the
2010s. During the same period, the watershed experienced climate change with a significant increase
in air temperature of 0.028 °C/year. We applied eight sensitivity-based techniques to separate the
effects of climate change on water yield from those due to forest changes. We used flow duration
curves (FDCs) to characterize flow regimes by dividing the study into four key periods based on the
proportional change of larch and birch trees. We found that the mean annual streamflow decreased
by 10 mm (−16 mm attributed to forest change and +6 mm to climate change) between the 1984–1994
period and the 2006–2016 period when the proportion of birch increased by 20% with a similar total
forest volume in the later period. The mean annual streamflow increased from 216 mm to 270 mm
(+35.5 mm due to forest change vs +17.7 mm due to climate change) when forest volume decreased
by 18.7% (17 m3/ha) between the 1970s and 1984–1994. Water yield changed only slightly (3.5 mm)
when forest volume increased by 8.7% (6 m3/ha) from 2000 to 2011. In addition, the magnitude of
high flow and low flow increased following deforestation and a shift in species composition from
a period (1984–1994) with 70% larch with 30% birch to a later period (2006–2016) with 50% larch with
50% birch. Both high flow and low flow decreased coinciding with a reforestation period (2006–2016).
Our results highlight complex interactions among climate, forest structure, total biomass, and plant
diversity (trees species composition) in influencing watershed hydrology. Further study is needed to
examine the effects of ecohydrological processes such as evapotranspiration in larch and birch forests
on hydrologic changes across multiple scales.
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1. Introduction

Understanding the relationship between forests and watershed hydrology or water supply is
critical for the sustainable management of headwaters worldwide. Most forest hydrological research
efforts have focused on the hydrologic effects of forest cover changes such as logging, reforestation,
or afforestation. Review studies on this topic showed that deforestation increases annual water
yield while reforestation decreases it [1–3]. However, few studies have examined the effects of
combined gradual changes in forest structure and species composition shift on watershed hydrology.
An early study published by Swank and Miner [4], Swank and Douglass [5] found that the conversion
of broadleaf forests to evergreen coniferous forests reduced water yield by more than 30% in the
southern Appalachians in the U.S. A series of related studies also suggested species change could
have appreciable impacts on streamflow in small watersheds. For instance, Serengil et al. [6] showed
that converting mixed deciduous forests to pine forests caused minor effects on high flows while the
high flow returns periods and low flow decreased with the conversion of mixed deciduous forest
to pine. Brantley et al. [7] showed that a shift from evergreen hemlock (Tsuga canadensis (L.) Carr.)
to deciduous species can potentially result in a permanent reduction in winter evapotranspiration
(ET) and an increase in winter streamflow. Caldwell et al. [8] showed that a shift in dominance from
xerophytic oak and hickory species to several mesophytic species decreased water yield by as much as
18% in a given year. Elliott et al. [9] demonstrated that the decline in streamflow could be explained by
the shift in major forest species from predominantly Quercus and Carya to predominantly Liriodendron
and Acer. However, the U.S. studies are in contrast with results for Japan, where broad leaved forests
did not use more water than coniferous forests [10–12]. A study by Sun et al. [13] in southern China
suggested that natural regeneration in a watershed dominated by Chinese fir (Cuninghamia Lancilanta)
plantations might have caused a decrease in streamflow. As far as we know, no studies have examined
the effects of converting deciduous conifer forests to mixed coniferous and broad-leaved forests in
a subboreal climate in Northeast China.

Changes in forest structure and species composition affect the total water balance of a watershed
by changing the total amount of ET, equal to the sum of canopy evaporation, evaporation from the
forest floor, and tree transpiration [8,14,15]. Plant water use and transpiration rates at the leaf, tree,
and stand levels differ greatly among species [16,17] due to xylem anatomy, sapwood area, and leaf
biomass [18]. Species with a ring-porous xylem anatomy, diffuse-porous xylem, semi-ring porous
xylem, and tracheid xylem anatomies have different physiological characteristics in transpiring water
for a given stem diameter [8,19]. As a result, changes in forest structure and species composition could
impact ET and water yield from forested watersheds. Hydrological changes due to vegetation change
have potential consequences for important hydrologic services, including water supply for human
water consumption, agriculture, and industry, and for downstream biodiversity and aquatic ecosystem
health [20].

In many large watersheds, climate change and forest dynamics are two major drivers of hydrologic
change [21,22]. To quantify the true impact of forests on streamflow, the impacts of climate change
must be distinguished from one another, which can be done with statistical or process-based modeling
methods [23]. Examples of these methods are hydrologic trend analysis [24], time trend method [25],
double mass curves [26], modified double mass curves [22], water balance [27], and sensitivity-based
methods [28,29].

The Da Hinggan Mountains in subboreal Northeast China is known for its importance in
timber production in China. Forest resources declined dramatically in the 1960s–1990s due to
heavy logging, from a forest stock of 460 million cubic meters in the 1960s to 0.18 million in the
2010s. Reforestation programs began in the 2000s after logging activities subsided. In addition,
the Da Hinggan Mountains form the headwaters of the Heilongjiang River and the Nenjiang
River. Sustainable water supply is one of the critical ecological challenges for the regions
downstream. The downstream Songnen-Sanjiang Plain is now a grain production area of major
national importance [30], and contains the largest wetland in Northeast China [31]. In order to reduce
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the risk of water shortages for agriculture and wetlands due to climate change [32], there is an urgent
need to better understand the impacts of forest changes on water yield.

The goal of this study was to examine how historic gradual deforestation and reforestation
activities affected streamflow and water supply in a region that has seen gradual forest changes over
the past four decades. As a case study, we selected one large watershed (6581 km2) with long-term
(40 years) data for hydrometeorology, land cover and forest resource inventory. The specific key
objectives were: (1) to analyze the changes in climate, streamflow and forest structure over time;
(2) to quantify the individual impact of climate variation and forest structure change on streamflow;
and (3) to determine how forest composition altered the flow regimes.

2. Study Watershed and Databases

2.1. Study Watershed

The Tahe watershed (124◦23′54”–124◦49′02” N, 51◦27′03”–51◦39′22” E) is located on the
northern slopes of Da Hinggan Mountains in Heilongjiang Province, northeastern China (Figure 1a).
The watershed represents a first-order tributary of the Huma River, which drains to the Heilongjiang
River, the world’s tenth longest river forming the border between the Russian Far East and northeastern
China [33]. The watershed covers an area of 6581 km2 and the main channel length is 148 km.
The topography is characterized by moderate hills divided by a broad valley [34], and the elevation
ranges from 340 m to 1309 m above sea level. Three quarters of the watershed area has an elevation
between 573 – 834 m and a mean slope of ~20% (Figure 1b). The forests are dominated by Larch
(Larix gmelinii), Mongolian pines (Pinus sylvestris var. mongolica) and Picea (Picea koraiensis Nakai),
and broadleaf species, such as Birch (Betula platyphylla), Poplar (Populus davidiana Dode). The climate is
classified as a boreal-temperate continental monsoon. The average annual precipitation is 505 mm,
of which 75% falls between June to September and 10% of precipitation is snow. Elevated temperatures
often coincide with high precipitation volume. The mean annual air temperature is −2.2 ◦C, with an
average high of 25.2 ◦C in July and an average low of −32.2 ◦C in January (Figure 2).
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Figure 2. Mean monthly streamflow, precipitation, potential evapotranspiration (ET0) and air
temperature in the Tahe watershed from 1972 to 2016.

2.2. Climate, Hydrology, and Landuse

We followed the protocol of “Observation Methodology for Long-term Forest Ecosystem Research”
of the National Standards of the People’s Republic of China (GB/T 33027–2016) to acquire daily
streamflow for the Xinlin hydrologic station from 1973 to 2016 (data missing in 1983). The daily mean
(Tmean), maximum (Tmax), minimum (Tmin) air temperatures, daily precipitation (P) and daily mean
wind speed were obtained from Xinlin climate station (Climate ID: 50349) and Tahe climate station
(Climate Station ID: 50246) (Figure 1b) and were provided by the China Meteorological Administration
(CMA) (http://cdc.cma.gov.cn).

The Land Use / Land Cover Change (LULCC) Data Set [35] that was generated from
remote sensing imageries was used to determine the land use changes for 1990, 2000, and 2010.
This dataset was provided by the Data Center for Resources and Environmental Sciences,
Chinese Academy of Sciences (http://www.resdc.cn). The land cover type was dominated by
forest lands, which changed only slightly from 90.9% to 90.3% during the past three decades.
Consequently, land cover in the Tahe watershed was fairly stable over time (Table 1).

Table 1. Land use in the Tahe watershed in 1990, 2000 and 2010.

Time
1990 2000 2010

Area (km2) Percentage (%) Area (km2) Percentage (%) Area (km2) Percentage (%)

Forest land 5997 90.9 5984 90.7 5957 90.3
Grass land 245 3.71 235 3.6 262 4.0
Urban and

builtup land 23 0.35 19 0.3 19 0.3

Farmland 24 0.36 36 0.6 36 0.6
Fen wetland 304 4.61 319 4.8 319 4.8
Water body 4 0.06 4 0.1 4 0.1

2.3. Forest Composition Shift

Forest species composition and volume data were obtained from 1986, 1994, 2007 and 2013 forest
resource inventory datasets maintained by the Xinlin Forestry Bureau. The forest composition was
almost 100% larch-dominated prior to the 1970s [33], and the volume of the forest was over 90 m3/ha
before widespread deforestation in the 1980s. The historical deforestation consisted of clear-cutting

http://cdc.cma.gov.cn
http://www.resdc.cn
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mature stands, and selective-cutting middle-aged stands. At the same time, larch plantations and birch
secondary growth started to appear on the clear-cut land (Figures 3 and 4). During the study period
1986–2007 the forests experienced both harvesting and restoration, the deciduous coniferous larch
forests gradually decreased, and the broadleaf deciduous forest (mostly birch) gradually increased.
After 2007, forests mainly experienced restoration due to the Natural Forest Protection Project;
forest species proportion minor changed, and forest volume gradually increased.
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3. Hydrologic Analysis Methods

Based on the 5-year historical forest resource inventory data, we first divided the study period
into four periods that had unique forest species compositions. Then, the changes in mean annual
streamflow and flow regime characterization were analysed in the four periods. We assumed that
climate variability and forest change were the two major factors that could explain streamflow change.
To quantify the sole effects of forest changes on streamflow, the impact of climate variations needs
to be separated from the total observed hydrologic changes: (1) Flow duration curves (FDCs) were
used for each period to characterize the long-term changes in streamflow regimes, and the paired year
approach was adopted to eliminate the effect of climate variations and understand the impact of forest
changes on flow regime characterization. (2) The climate elasticity models were used to calculate the
portion of the mean annual streamflow that was affected by climate variations, and the other portion
in the total change of mean annual streamflow was due to forest changes.
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3.1. Four Periods for Hydrologic Change Analysis

We subdivided the entire study period into four periods based on the proportional change of
larch and birch trees.

Period 1: 1972–1982, larch accounted for almost 100% of the forest area;
Period 2: 1984–1994, 70% of larch with 30% of birch;
Period 3: 1995–2005, 60% of larch with 40% of birch;
Period 4: 2006–2016, 50% of larch with 50% of birch.

Tree species other than larch and birch covered only a minor portion of the watershed and were
not considered in defining these periods. Based on the historic Forest Resource Inventory datasets
(Figure 4), a linear regression was used to interpolate the forest stock volume for any year during the
study periods.

In order to make the results more representative, three sets of comparisons in different periods
were performed to explore the annual streamflow change due to forest structure change and species
composition shift:

First, the effect of deforestation on streamflow was obtained by comparing Period 1 and Period 2.
During Period 2, the total stock volume of the forest decreased by 18.7%, which included the volume
of larch that decreased by 30 m3/ha and the volume of birch that increased by 13 m3/ha, while the
forest species shifted from 100% larch to 70% larch with 30% birch. The proportion of birch increased
due to the natural forest succession as young forests presumably use less water, and the change in
streamflow was mainly caused by deforestation.

Second, streamflow change between Period 2 and Period 4 was considered to be the effects of species
composition shift. The total forest stock volume was similar between the two periods (around 75 m3/ha).
Meanwhile, the forest species shifted from 70% larch with 30% birch to 50% larch with 50% birch, and the
stock volume of larch decreased by 41.2% and the stock volume of birch increased by 186.6%.

Third, Period 3 was compared with Period 4 to evaluate the impact of reforestation on streamflow.
The total stock volume of forest increased from 68 m3/ha to 75 m3/ha, which included a minor
decrease of 3 m3/ha in the larch stock volume; the volume of birch increased by 10 m3/ha, while only
10% larch shifted to birch.

3.2. Flow Regime Characterization

Information on high and low flows is essential to ensure aquatic biodiversity and functional
integrity of river ecosystems [36]. Flow Duration Curves (FDCs) show the percentage of time during
which a given magnitude of streamflow is exceeded, and this characteristic makes it a useful indicator
of hydrologic change [3]. The percentage represents the probability of exceedance p of a given
discharge, Q, where p is defined by p = 1− P{Q ≤ q} [37,38]. Similarly, the precipitation duration
curves (PDCs) characterize daily precipitation patterns.

We used FDCs to define high and low flow regimes. High flows are defined as the flows that equal
to or are greater than Q5 (Q5: flow exceeded for 5% of the time in a given year) [39,40]. During winters,
the rivers are covered by ice, and the runoff was extremely small. Low flows refer to the flows that are
equal to or less than Q70 (Q70: flows exceeded for 70% of the time in a given year) [41].

In order to eliminate the effect of climate variation and understand the impact of forest change on
flow regimes, the paired year approach developed by Zhang and Wei [42] was adopted in this study.
The paired year approach used Kendall’s tau and Spearman correlation analyses to test the correlations
between hydrological variables (high flow magnitude and low flow magnitude) and climatic variables
(annual precipitation, wind speed, mean annual temperature, maximum temperature, and minimum
temperature). The significant climatic variables were identified when the results from two methods
both showed significant correlations. Each paired years from different periods were selected according
to the most relevant climate variables.
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3.3. Climate Elasticity of Mean Annual Streamflow

Changes in observed mean annual streamflow (∆Qtot) were attributed to climate variability (∆QC)
and forest change (∆QH) as follows [43,44].

∆Qtot = ∆QC + ∆QH (1)

We applied the widely used climate elasticity model develop by Shaake [45] to evaluate the
sensitivity of streamflow to climate change and separate streamflow impacts caused by climate change
from human activities:

ε =
dQ/Q
dX/X

(2)

The climate elasticity of streamflow (ε) is defined by the proportional change in streamflow (Q)
divided by the proportional change in a climate variable X, such as P, temperature, or potential
evapotranspiration (ET0).

ET0 is preferred to temperature because ET0 better reflects the direct effects of climate change on
streamflow [29,46]. The approach used to calculate ET0 is provided in Supplement S1. According to
Sankarasubramanian et al. [47], Zheng et al. [29], ∆QC is estimated from ∆P, ∆ET0 (changes in
precipitation P and ET0 between the different phases) using the following equation:

∆QC =
(
εP∆P/P + εET0 ∆ET0/ET0

)
Q, and εP + εE0 = 1 (3)

where εP and εET0 are the P and ET0 elasticity coefficients, respectively. Over-bars represent the mean
over the combined baseline and post treatment periods. Mean annual streamflow changes between
each ‘post treatment’ period and the baseline period (Period 1) were examined using sensitivity-based
method. To reduce uncertainty for different analytic methods, we used multiplication techniques in
this study including non-parametric and Budyko framework-based approaches.

3.3.1. Nonparametric Estimator of εP

Sankarasubramanian et al. [47] proposed a nonparametric approach to estimate the climate
elasticity directly from observed hydrologic data. This method has been used in the United States [47],
Australia [28,48] and China [29], and Zheng et al. [29] rewrote the equation as follows:

εP = median

[(
Qi −Q

)
/Q(

Pi − P
)
/P

]
(4)

In addition, an alternative nonparametric of climate elasticity (εP, εE0) is a multiple regression
equation (Equation (5)) and can be estimated using the least squares estimator [29,49].

ε =
X
Q
·∑
(
Xi − X

)(
Qi −Q

)
∑
(
Xi − X

)2 = ρX,Q·CQ/CX (5)

where ρX,Q is the correlation coefficient of X and Q, and CX and CQ are coefficients of variation of X
and Q, respectively.

3.3.2. Budyko framework for Estimating εP

According to the Budyko [50], mean actual evapotranspiration (E) is a function of aridity index
(AI = ET0/P).

E = PF(AI) (6)
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The precipitation elasticity of streamflow can be expressed using the following equation.

εP = 1 +
AIF′(AI)
1− F(AI)

(7)

According to the Equation (7), εP can be estimated for a given AI, once the form of F(AI) is
given, (F′ (AI) is the derivative of F(AI)). We calculated six forms of F(AI) based on the Budyko
hypothesis (Table 2).

Table 2. A summary of methods for estimating annual actual evapotranspiration based on the
Budyko Hypothesis.

Expression Form F(AI)

Schreiber [51] F(x) = e−AI

Ol’Dekop [52] F(x) = AItanh(1/AI)
Budyko [50] F(x) = AI tanh(1/AI)

(
1− e−AI)0.5

Pike [53] F(x) = 1/
√

1 + AI−2

Fu [54] F(x) = 1 + AI − (1 + AIα)1/α, α = 2.5
Foster [37], Sun et al. [34] F(x) = (1 + wAI)/(1 + wAI + 1/AI), w = 2

4. Results

4.1. Changes in Climate and Streamflow

The mean annual temperature and mean maximum temperature followed a significant positive
trend (p < 0.01) during the entire study period (1972–2016), with an increase of 0.028°C/year and
0.043°C/year, respectively. The ET0 also followed a significant positive trend (1.4 mm/year, p < 0.01,
Kendall tau). However, there were no statistically significant linear trends across all years in annual
streamflow, mean minimum temperature, precipitation, or runoff ratio (Table 3).

Table 3. Hydrological and climatic changes for study period.

Variable Q/mm P/mm Runoff
Ratio ET/mm ET0/mm T/◦C Tmax/◦C Tmin/◦C

Mean 247 490 0.46 243 562 −2.05 5.12 −8.22
Slope 0.7 0.9 0.07% 0.1 1.4 1 0.028 0.043 0.018

Note: Q = annual streamflow; P = annual precipitation; ET = actual evapotranspiration calculated as P-Q;
ET0 = potential evapotranspiration calculated by the Hamon method; T = mean annual air temperature. Bold
underlined values indicate the trends with statistical significance of p < 0.01. 1 Bold values indicate the trends with
statistical significance of p < 0.05.

Compared with Period 1, the mean annual precipitation in Period 2 increased by 28 mm (5%)
with a 21 mm increase in mean annual ET0 (Figure 5). The annual streamflow increased by 53 mm
(24%) and the runoff coefficients increased by 17.8%. These changes coincide with a period of
massive deforestation of larch forests. Compared with Period 2, Period 4 had 17 mm higher mean
annual precipitation with a 19 mm increase in mean annual ET0. During this period, with species
composition shift, mean annual streamflow and Q/P ratios decreased by 3% and 8%, respectively.
Forest harvesting slowed down during Period 4 and the forests partially recovered. Compared with
Period 3, mean annual precipitation increased by 27 mm in Period 4 and the mean annual ET0 increased
by 11 mm. The mean annual streamflow increased by 7% and with negligible change in Q/P ratios.
In order to single out the impacts of forest changes on streamflow, climate effects of the increase in ET0

and the variability of precipitation should be eliminated as presented in the following sections.
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4.2. Impacts of Forest Change on Annual Streamflow

The eight methods provided comparable results (Table S1 and Figure S1). Thus, the means were
used to separate the respective influences of climate and forest structure and species composition on
annual streamflow.

Overall, the impact of forest change (∆QF) on annual streamflow declined gradually with forest
recovery (Table 4). First, the mean annual streamflow increased by 35.5 mm due to deforestation during
Period 2, when forest change accounted for 65.7% of total change. Second, the forest species composition
between Period 2 and Period 4 reduced the mean annual streamflow of 16 mm. Third, the impact of
reforestation on annual streamflow between Period 3 and Period 4 decreased mean annual streamflow by
3.2 mm. In addition, climate changes in P and ET0 caused an increase in mean annual streamflow up to
11.1% during the highest precipitation period (Period 4). However, the climate contribution to this change
was minor (1.6%) during the period with the lowest precipitation (Period 3).

Table 4. Attribution of forest composition change and climate variability to mean annual
streamflow change.

Period ∆
¯
P (mm) ∆PET (mm) ∆Qtot

(mm) and
Relative Change

Forest ∆QF Climate ∆QC

Absolute (mm)
and Restively

Change

Relative
Contribution

Absolute (mm)
and Relative

Change

Relative
Contribution

Period 1 Baseline Period
Period 2 +27 +26 +54 (26%) +35.5 (+16.4%) 65.7% +17.7 (+8.1%) 34.3%
Period 3 +17 +36 +26 (11%) +22.7 (+10.4%) 87.3% +3.4 (+1.6%) 12.7%
Period 4 +45 +48 +44 (20%) +19.5 (+9.0%) 44.3% +24.0 (+11.1%) 55.7%

4.3. Impacts of Forest Change on Flow Regimes

Daily high flows were strongly correlated with daily precipitation. The mean precipitation that
exceeded 10% in the four periods was 17.7, 17.4, 15.4 and 19.4 mm (Figure 6c), and the mean magnitude
of high flows was different (Figure 5a).
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Deforestation increased both high flows and low flows, but it decreased the high flow stability.
The mean magnitude of high flow (193 m3/s) in Period 1 was 20% lower than that in Period 2
(233 m3/s), while the mean magnitude of low flow was increased from 3 m3/s (Period 1) to 5 m3/s
(Period 2). On the contrary, the mean magnitude of high flow increased by only 7%, from Period 3
(208.7 m3/s) to Period 4 (223.3 m3/s), while the mean magnitude of low flow was similar between
Period 3 (5.7 m3/s) and Period 4 (5.1 m3/s). The forest species composition change made high flow
more unstable. Compared with Period 2, Period 4 was similar in the mean magnitude of high flow
and lower in the 25%–75% interval of precipitation, but the 25%–75% interval of high flow exhibited
great variability, i.e., 187 m3/s–267 m3/s in Period 2 and 133 m3/s–297 m3/s in Period 4 (Figure 6a,c).

The detailed result of selecting the pairing year is described in the Supplementary Materials
(Tables S2–S4). It appeared that the high flows for Period 1 were the lowest in all periods (Figure 7a–c),
although the extreme precipitation in the period was higher (Figure S2). Compared with 2003 (Period 3)
and 2009 (Period 4), 1990 (Period 2) had a lower high flow (Figure 7d,e). The 2012 high and low flows
(Period 4) were lower than the 2000 (Period 3) high and low flows, respectively (Figure 7f). The low
flow showed the same tend as high flow. As shown in Figure 8, the low flow of Period 1 was the lowest
of all periods, and Period 2 experienced lower low flow than Period 3 and Period 4. In addition, the low
flow in 1996 (Period 4) was 20% lower than that in 2010 (Period 3) with increasing forest volume.
Overall, the forest species change from deciduous conifer forest to deciduous conifer broad-leaved
mixed forest had a positive correlation with high flows and low flows, while the forest total volume
was negatively correlated. (For details, see Supplementary Materials Figures S2–S7).
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5. Discussion

5.1. The Effects of Forest Structure Change and Species Composition Shift on Annual Streamflow

Our results are consistent with a few studies on the impacts of deforestation and reforestation on
annual streamflow in large watersheds (e.g., Li et al. [2]). Previous studies suggest the mechanisms
are that deforestation decreases evapotranspiration [3,55] and reduces soil infiltration capacity due to
soil erosion and compaction [40], while reforestation reverse these changes. Wang et al. [56] compared
streamflow in 22 watersheds in our study region and concluded that that both forest cover percentage
and local climate, as modified by watershed elevations, controlled streamflow. It has long been
established that plant biomass or leaf area has a major influence on ecosystem water use by the changes
in ET [57]. Our study suggested that the gradual changes in the amount of forest cover altered tree
water use patterns and consequently, streamflow.

A combination of changes in the physical processes (evaporation) and physiological processes
(transpiration) may explain the detected streamflow change. First, the canopy interception of the
secondary birch forest was lower than that of natural old-growth larch forest (about 8% of the total
rainfall and 7.8% of total snowfall) [58–60]. In addition, litter interception may also be an important
part of evaporation. The litter layer of the secondary growth birch forest would theoretically attenuate
the negative effects of increased forest coverage on streamflow [33]. Second, the transpiration rates
of birch trees are higher than those of larch trees. The main reason for the difference in transpiration
between the two species was xylem anatomy type. The xylem anatomy type of larch consists of
tracheids, and birch is diffuse-porous. The water use of diffuse-porous species is much higher than
that of tracheid species for a given stem diameter [8,19,61]. Generally, the transpiration of conifer
species is lower than that of broad-leaved species [53]. Due to the difference in climate zones, the case
studies in the U.S. showed that coniferous forests use more water than broad-leaved forests, and the
results were opposite in Japan [11,26]. In northern China, Zhang and Wang [62] showed that the
transpiration of temperate broad-leaved forest is 1.72 times higher than the northern coniferous forest.
Mu [63] showed that birch transpiration is almost twice that of larch when the air temperature is 20 ◦C.
Unfortunately, there has been no detailed comparison study on sapflow of birch and larch trees in the
Da Hinggan Mountain region. Further study is needed to quantify water use by individual trees and
at the stand level to better understand the effects of species change on streamflow.

5.2. The Effects of Forest Structure Change and Species Composition Shift on Streamflow Regime

Several studies on deforestation impacts in rainfall-dominated regions [40,64,65] yielded
conclusions similar to ours. For example, Kelly et al. [66] showed that forest structure change and
species composition shift can enhance or lessen the effects of changes in precipitation patterns on high
flow and low flow. Conversely, the conclusions for snowfall-dominated watersheds [67,68] were in
contrast with our results.

We argue that the contrast might be caused by the drastic change in energy balances in boreal
regions after a reduction in vegetation cover due to deforestation. It was reported that snowmelt
within the lower elevation of a watershed often starts earlier in the spring season and occurs at a higher
rate than at high elevations. The different snow melting patterns reduce the number of high flows [42].
In our study region, snowfall accounted for only approximately 10% of total precipitation. The annual
streamflow hydrograph is characterized by high flows during spring, when snow melts, and summer,
when rainfall peaks [39]. In spring, the snow was melting rapidly when the temperature increased
suddenly, and most rainfall formed surface runoff with little infiltration because the soil was still
frozen. In summer, with continuous precipitation, the decreased forest interception in deforestation
and species composition shift [33], the reduction of the water-holding capacity of litter [69], added to
reduced soil disturbance by erosion and compaction [40] increased the magnitude of high flow.

Regarding the impacts of forest change on low flow, studies on rain-dominated watersheds
in China suggested that deforestation decreased the magnitude of low flows, while reforestation
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increased it [24,40,70]. These studies claimed that soil infiltration capacity and water storage decreased
(increased) when forests were degraded (restored). In contrast, our study showed that deforestation
increased the magnitude of the low flow while reforestation decreased it. Our findings are more in
line with other experimental studies outside China [65,71] that suggest that evapotranspiration is the
main factor affecting the response of flow regimes to forest disturbances. We argue the soils may not
be affected under the deforestation period in our study and thus change in ET is the main reason of
observed hydrologic change. In addition, our watershed is located in a climate with cold winters and
the frozen river had little flow during the winter period [72]. The low flows also occurred in the fall
and spring. The low flow in the fall was affected by evapotranspiration, and the low flow in spring was
affected by snow melt temperature. The high correlation between mean annual minimum temperature
and low flow may futher explain the temperature control on low flows (Table S2).

5.3. Implications and Uncertainty

Hydrology of headwater watersheds in Da Hinggan Mountains is not well understood due to the
remoteness of the region in spite of the Heilongjiang River and the Nenjiang River. Songnen-Sanjiang
Plain downstream of our study area being a major grain production region [30] with the largest wetland
in northeastern China [31].

Our results indicated that reforestation decreased the mean annual streamflow by 16 mm and
largely offset the climate impact (an increase in precipitation) on streamflow in the past decade.
Forest water consumption increased gradually due to the increased biomass under the current forest
management policies and rapid climate warming. If precipitation does not increase or become stable in
the future, the reduction of annual water yield due to global warming forest regrowth is likely to cause
stress of water demand for irrigation and wetlands in downstream [32,73]. In addition, our result
indicated that the watersheds covered by primitive larch forests had a lower high flows and flood risk
as compared with deciduous conifer broad-leaved mixed forests.

Our study suggests forest cover area (%) or timber stock volume may not be good indicators of
forest hydrologic restoration success. Instead, forest biomass and species composition appear to best
describe forest-water relations. Forest management that aims at reducing the frequency of floods [66]
should consider forest structure, total biomass, and diversity (trees species composition).

Using multiple statistical methods to separate the hydrologic effects of forests from climate
reveled several uncertainties. First, the six Budyko framework-based methods provide similar
results. This is perhaps because those approaches use the same underlying concept to estimate
the climate elasticity coefficients [28]. However, the results from the two non-parametric approaches
had greater uncertainty. This was expected as all of these methods involve mathematically fitting.
The temperature-based Hamon PET method was used to calculate ET0 due to the limited meteorological
variables observed at the weather stations. Many climatic factors affect evapotranspiration including
relative humidity, wind speed and radiation [74,75]. Compared with the baseline period, the wind
speed increased by 4% in Period 2 and declined by about 3% and 23% in Period 3 and Period 4,
respectively. Therefore, the actual evapotranspiration could be a little higher than the calculated in
Period 2 and lower in the other two periods. Duan et al. [33], Chang et al. [76] showed that climate
change and deforestation caused the melting of permafrost in the study area, which likely leads to an
increase in streamflow.

6. Conclusions

We quantitatively evaluated the impacts of forest structure change and species composition shift
on streamflow in the Tahe River watershed in northeastern China using multiple statistical models.
The forest composition in the watershed gradually changed over time with young larch forests and
secondary birch forests replacing old-growth larch.

We conclude that deforestation increased annual streamflow while reforestation/regrowth
decreased annual streamflow. A shift in tree species composition also contributed to the reduction
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of mean annual streamflow. The primitive forest ecosystem had the ability to maintain streamflow
stability and reduced the risk of floods. Deforestation and the species composition shift increased the
magnitude of high flow and low flow, while reforestation had the opposite result. The streamflow
regimes were affected by forest structure (stock volume) and species composition.

Our results suggest that although total forest stock recovered by 2013, the flow regime did
not return to the state prior to large-scale logging in the 1980s. Water yield remains higher than
in the 1970s when the old-growth forest was still intact. However, it is likely that water yield in
the Tahe River watershed may decrease in response to a combination of global warming and forest
recovery/tree species change in the near future if precipitation does not increase. It becomes more
challenging to optimize ecosystem services such as water supply and carbon sequestration through
forest management practices in the study region.

Supplementary Materials: The following materials are available online at http://www.mdpi.com/1999-4907/
10/3/211/s1, Text S1: Hamon method used to calculate the potential evapotranspiration (ET0), Table S1:
The change in streamflow for the different periods when using the eight sensitivity-based approaches, Table S2:
Correlation analysis of hydrological variables (high and low flow) and climatic variables, Table S3: The selected
pairs for high flow, Table S4: The selected pairs for low flow, Figure S1: Changes in streamflow depth during the
three periods due to forest structure and climate change estimated by the eight approaches, Figures S2–S4 show
the high flow for the selected paired years in FDCs and PDCs, Figures S5–S7 show the low flow for the selected
paired years in FDCs and PDCs.
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