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Abstract
The Qinghai-Tibet Plateau constitutes unique mountain ecosystems that can be used for early
detection of the impacts of climate change on ecosystem functions. We use the MAPSS-
CENTURY 2 (MC2), a dynamic global vegetation model, to examine the potential responses of
terrestrial ecosystems to climate change in the past (1961–2010) and future (2011–2080) under one
medium-low warming scenario (RCP4.5) at a 1-km spatial resolution in the Upper Heihe River
Basin (UHRB), northwestern China. Results showed that 21.4% of the watershed area has
experienced changes in potential natural vegetation types in the past and that 42.6% of the land
would undergo changes by the 2070s, characterized by a sharp increase in alpine tundra at the cost of
cold barren land. Net primary productivity (NPP) and heterotrophic respiration (RH) have increased
sharply since the mid-1980s and are projected to remain at reduced rates in the future. Overall,
UHRB switched from carbon neutral to a carbon sink in 1961–2010, and the sink strength is
projected to decline after 2040. Additionally, future climate change is projected to drive a decrease in
water yield due to a slight decrease in precipitation and an increase in evapotranspiration (ET).
Furthermore, we find large spatial variations in simulated ecosystem dynamics, including an upward
trend of NPP, RH, and ET in the alpine zone, but a downward trend in themid-elevation forest zone.
These results underscore the complexity of potential impacts of climate change on mountain
watersheds that represent the headwaters of inland river systems in an arid environment.

1 Introduction

Climate change, characterized by an increasing temperature and a suite of other alterations to the
recent climate regime (e.g., greenhouse gases, precipitation, radiation), can strongly affect terrestrial

https://doi.org/10.1007/s10584-019-02524-4

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10584-019-
02524-4) contains supplementary material, which is available to authorized users.

* Lu Hao
haolu@nuist.edu.cn

Extended author information available on the last page of the article

Climatic Change (2019) 156:31–

Published online: August 201915     

50

http://crossmark.crossref.org/dialog/?doi=10.1007/s10584-019-02524-4&domain=pdf
http://orcid.org/0000-0002-3720-7916
http://orcid.org/0000-0003-3665-3313
https://doi.org/10.1007/s10584-019-02524-4
https://doi.org/10.1007/s10584-019-02524-4
mailto:haolu@nuist.edu.cn


ecosystems on timescales of decades to centuries (IPCC 2013). Mountains, covering approximate-
ly one-fourth of the global land area, constitute unique ecosystems for the early detection of climate
change and for evaluation of the associated ecological responses (Beniston 2003). Climate in high
elevations can change rapidly over a relatively short horizontal distance, resulting in a rich mosaic
of ecosystems representing multiple latitudinal zones. Vegetation changes in high mountains are
often more pronounced and easier to identify than those in lowlands owing to the high topographic
and habitat gradients (Theurillat and Guisan 2001) and therefore are generally considered to be
ecological indicators of climate change effects (Gobiet et al. 2014). At the same time, mountainous
regions provide numerous ecosystem services to human society, including biodiversity, water
resources, energy generation (hydropower), agricultural products, minerals, and recreation. Al-
though only 26% of the global population resides in mountainous regions, over half of the global
population depends on the ecosystem services provided by mountains (Beniston 2003). In
particular, mountains are often recognized as “water towers” for the surrounding area, asmountains
induce precipitation through orographic effects and then store water in their glaciers and snow-
packs. This is particularly important in arid regions where precipitation is limited in lowlands and
mountains are the primary source of water for downstream users.

The Heihe River Basin (HRB), located in arid northwestern China, is typical of many
inland river basins in China. It houses over 1.46 million people and represents one of the most
studied basins in China for understanding human-nature interactions (Cheng et al. 2014).
Similar to other river basins in arid western China, the HRB has been increasingly experienc-
ing water shortages due to rapid climate change and extensive anthropogenic disturbances,
such as crop irrigation and urbanization, in recent years (Zhou et al. 2014). The Upper HRB
(UHRB) is the area above 1700 m elevation, and it supplies approximately 70% of the total
streamflow in the entire basin (Gao et al. 2016; Ruan et al. 2017). A systematic evaluation of
possible future climate change impacts on the UHRB is crucial for formulating local climate
change mitigation and adaptation strategies and for enhancing our understanding of the role of
high elevation mountains in arid regions of the world.

The effects of climate change on ecosystems in the UHRB have been widely documented
(Gao et al. 2016; Hao et al. 2016; Liu et al. 2017; Zhou et al. 2014). However, previous efforts
have generally focused on a single-factor or short-term historical trends. For example, using a
geomorphology-based hydrology model, Gao et al. (2016) concluded that the river runoff was
mainly determined by the “cold barren” and alpine tundra land cover types. They simulated
conditions between 1980 and 2010 and did not extend simulations into the future. Remote
sensing studies documented an overall increasing trend of vegetation productivity in the
UHRB from 1982 to 2012 due to a warming and wetting climate (Hao et al. 2016; Liu
et al. 2017). To project vegetation dynamics under climate change scenarios and to predict how
those changes will interact with the hydrology of the watershed, an integrated approach is
needed, one that models the long-term climate-vegetation-water dynamics. Future projections
for the UHRB are needed by regional policy-makers to manage various ecosystem services
provided by the UHRB to the surrounding region.

Dynamic global vegetation models (DGVMs) have the ability to simulate interactions
between climate, vegetation, and water under long-term climate change scenarios. They have
been widely used to explore the effects of climate change on terrestrial ecosystems (Cramer
et al. 2001). While there are many global applications of DGVMs (Gonzalez et al. 2010; Kim
et al. 2017), those results do not have sufficient spatial resolution or satisfactory calibration for
a focused regional-scale analysis. DGVMs have been calibrated for specific regions using
region-specific datasets (Case et al. 2018; Kim et al. 2018). The limited availability of fine
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resolution climate data and other ancillary datasets at the regional scale is a significant
challenge to regional applications of DGVMs. Although climate change projections from
general circulation models are widely available, they are generally too coarse and often fail to
adequately capture the local climate. For example, they fail to capture precipitation patterns in
a mountainous region with a complex terrain (Beniston 2003). Some downscaled climate
projections are available but are generally limited to North America and Europe (Palomo
2017). In addition, the soil data required for modeling vegetation dynamics have poor spatial
accuracy for many mountainous regions of the globe.

In this study, we explored the responses of vegetation and ecosystem functions to historical
(1961–2010) and projected future (2011–2080) climate changes at a 1-km spatial resolution in
the UHRB. We used MAPSS-CENTURY 2 (MC2) DGVM (Bachelet et al. 2001; Conklin
et al. 2016), which simulates vegetation biogeography, biogeochemistry, and interactions with
fire on a gridded landscape. Our objectives were to (1) calibrate and evaluate MC2 to the
UHRB using the best available data and (2) characterize the simulated impacts of climate
change on the potential vegetation type and two key ecosystem services: carbon sequestration
and the water budget. This study represents the first modeling effort in this high population
region where vegetation dynamics are modeled across a large scale over a long-term. In
addition, it is the first regional application of MC2 outside of North America, the continent in
which the model was originally developed.

2 Methods

2.1 Study area

The Heihe River Basin (HRB) is a 128,900 km2 watershed in northwest China (Fig. 1a). The
Upper HRB (UHRB) (98° 34′–101° 11′ E, 37° 41′–39° 05′N), with a total area of 10,005 km2, is
located along the southern edge of the HRB (Fig. 1b). With elevations ranging from 1700 to
2500m, the UHRB is a part of the Qinghai-Tibet Plateau. The UHRBhas climate, vegetation, and
socioeconomic conditions distinct from the rest of the HRB (Cheng et al. 2014). Climate varies
substantially across the complex topography of the UHRB, with a mean annual precipitation
ranging from 161 to 721 mm and a mean annual temperature ranging from − 9.9 to 6.4 °C (Fig.
A1). The complexmosaic of vegetation can be classified intomajor vegetation types for modeling
and analysis including cold barren (Saussurea DC., CremanthodiumDC., andRhodiola roseaL.),
alpine tundra (Kobresia parva, Kobresia humilis, and Kobresia tibetica), shrub (Potentillafruticosa
Linn,Dasiphora fruticosa, Caragana jubata, and Salix gilashanica), forest (Piceacrassifolia Kom),
grass (Abietinella abietina, Stipapurpurea Griseb, Stipa purpurea, Stipa przewalskii, and Carex
kansuensis), and desert (Symplegma regelii Bunge). The soils in the UHRB are dominated by
alpine frost (silty-sand textured), felty (silty-sand textured), and chestnut (sandy textured) soils
(Qin et al. 2016b). The soils are generally deeper than 20 cm (Fig. A1) with a mean depth of
71 cm. Soil organic carbon (SOC) exceeds 15 g kg−1 (Song et al. 2016), with more SOC in the
permafrost layer than in the active layer (Mu et al. 2014).

2.2 MC2 dynamic global vegetation model

MC2 is a computationally efficient version of the MC1 DGVM designed to simulate the
effects of climate change and wildfires on vegetation together with ecosystem structure
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and function. MC1 and MC2 have been used in regional, continental, and global studies
(Bachelet et al. 2015; Bachelet et al. 2003; Sheehan et al. 2015). Details of MC2 design are
documented elsewhere (Bachelet et al. 2001; Conklin et al. 2016). Here, we summarize the
salient features of MC2. MC2 comprises three linked modules: the MAPSS biogeography
model (Neilson 1995); a modified version of the CENTURY Soil Organic Model (Parton
et al. 1993) for simulating biogeochemistry; and MC-FIRE (Lenihan et al. 1998), which
simulates fire occurrence and its effects. MC2 runs on a monthly time step and represents
the landscape as a grid with no interaction among grid cells. In each grid cell, the model
simulates the competition for light, water, and nutrients between trees and grass. Every
month, the biogeochemistry module calculates the water budget for each grid cell and
calculates vegetation productivity and the carbon budget. Productivity is constrained by
temperature and soil moisture according to vegetation type-specific parameters. The fire
module converts carbon stocks into fuel models according to species-specific parameters.
Fire occurrence is determined using thresholds on two fuel moisture indices. Annually, the
biogeography module classifies each grid cell into a vegetation type.

Fig. 1 Location of the Upper Heihe River Basin (UHRB) (a, b) and the historical (1961–2010) and projected
future (2011–2080) mean annual temperature (c), total precipitation (d), and CO2 concentrations (e). Historical
climate data (CRU+NCEP) (Wei et al. 2014) used in the Multiscale Synthesis and Terrestrial Model Intercom-
parison Project (MsTMIP) (Shim et al. 2014) and climate projections from five global climate models (BNU-
ESM, IPSL-CM5A-MR, MPI-ESM-LR, MPI-ESM-MR, NorESM1-M) published by the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) covering the UHRB are also shown in panels c and d. The shaded area
represents one standard deviation computed from the five climate models
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MC2 is run in four successive phases. In the first phase, the model uses the 1961–1990
climatology to predict potential vegetation biogeography and to spin up the soil carbon pools
until they stabilize. In the second phase, the model is run for 2000 years with detrended
historical climate until a dynamic equilibrium among vegetation, wildfire, and climate is
reached. The detrended historical climate data were created from the period 1961–1990
following Drapek et al. (2015), where the climate values are converted to anomalies relative
to a 30-year moving window average and then added to the 1961–1975 climatology. The third
and fourth phases are the simulations of historical and future conditions, where the model is
run using transient climate data to simulate the response of vegetation to historic and projected
future climate.

2.3 Input data

We obtained 1-km spatial resolution monthly climate data (minimum temperature, maximum
temperature, precipitation, and vapor pressure) for the UHRB from 1961 to 2012 from Wang
et al. (2016) and Ruan et al. (2017). These were climate reanalysis data based on 15 national
meteorological stations, 25 hydrological stations, and the RIEMS 2.0 regional climate model
(Xiong and Yan 2013). Since Wang et al. (2016) and Ruan et al. (2017) described the datasets
in detail, here, we summarize only the salient characteristics of the dataset. RIEMS 2.0
accurately captures the seasonal and spatial patterns of the climate in the UHRB, although it
may overestimate precipitation (Xiong and Yan 2013). The weather and hydrological stations
provide accurate local climate data. This reanalysis data is superior to global datasets, with R2

between the interpolated and observation values larger than 0.7 at the monthly scale (Wang
et al. 2016). The mean annual temperature and precipitation in the UHRB are substantially
overestimated and underestimated by the global-scale climate data, respectively (Fig. 1c, d)
(Wei et al. 2014), suggesting possible underestimation of the ecosystem productivity and
evapotranspiration in the UHRB by global-scale simulations.

We also obtained one future climate projection available from RIEMS 2.0. The climate
projection is based on RCP4.5, the medium-low warming scenario from the IPCC Fifth
Assessment Report (AR5), and spans 2006 to 2080 (Xiong and Yan 2013). The 3-km
resolution output from RIEMS 2.0 was downscaled to 1 km using the delta method (Drapek
et al. 2015). First, the data from RIEMS 2.0 were resampled to a spatial resolution of 1-km
using bilinear interpolation method to represent the climate change trends of all grids. Second,
the difference (precipitation and vapor pressure) or ratio (temperature) of climate reanalysis
data to RIEMS data, reflecting the corrected climate and the spatial variability, was calculated
based on the data in the overlapped time period of 2006–2012 for each month and each
individual grid. Finally, we added the differences or multiplied the ratios to the modeled data
over the period of 2011–2080 by assuming the same spatial variability of climate through the
time. The resultant data project the mean annual temperature to increase continuously from
2011 to 2080 at an annual rate of 0.026 °C, while precipitation is projected to decrease slightly
during the same period (Fig. 1d). The annual mean temperature and total precipitation were
significantly lower and higher, respectively, than values estimated by global circulation models
(GCMs) data published by the Coupled Model Intercomparison Project Phase 5 (CMIP5),
respectively (Fig. 1c, d).

We obtained 90 m soil data from Song et al. (2016) and Yang et al. (2016), which were
generated by soil-landscape models based on 548 sampling points within the HRB (Fig. A1).
We extracted the 90-m elevation data from ASTER GDEM version 2 (Tachikawa et al. 2011).
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The soil and elevation data were resampled to 1 km to align with the climate data. For
atmospheric CO2 concentrations under RCP 4.5, we used values published by Meinshausen
et al. (2011), where they increase continuously from 2006 to 2080 at a rate of 2.22 ppm year−1

(Fig. 1e).

2.4 Model calibration

We used a structured approach to calibrate MC2 (Table 1), following an application of MC2 to
a mountainous region in the USA (Kim et al. 2018). First, we calibrated the model for net
primary production (NPP) and maximum leaf area index (LAI) with the fire module disabled.
We adjusted the water- and temperature-based productivity coefficients and the potential
aboveground monthly production limits to obtain model output that matched the Moderate
Resolution Imaging Spectroradiometer (MODIS) gridded NPP estimates (MOD17A3)
(Running and Zhao 2015). We adjusted the maximum LAI limits so that the simulated LAI
matched the GLASS LAI version 3.0 (Xiao et al. 2016). MODIS and GLASS data exhibit
good performances in mountainous areas (Jin et al. 2017; Shim et al. 2014).

In the second stage of calibration, we adjusted the MC2’s biogeography rules so that the
model output matched an actual vegetation map for the UHRB (Zhang et al. 2016). Vegetation
cover types in the UHRB are primarily controlled by natural factors (Cheng et al. 2014). We
adjusted the temperature thresholds for the climate zones and carbon and productivity thresh-
olds for the biomes and vegetation types. We grouped the actual vegetation types into the six
vegetation types defined by MC2: cold barren (with no or very sparse vegetation and boreal
climate), alpine tundra, forest (boreal evergreen needleleaf forest), shrub/grass (boreal shrub-
land, temperate shrubland, temperate grassland), and desert (with sparse vegetation and
temperate climate). We did not separate grassland from shrubland because of its small area
percentage and the high probability of it being misclassified as shrubland in MC2. The primary
difference between cold barren and desert was the climate zone. As the final step, we turned on
the fire module and repeated the calibration stages described above.

2.5 Model evaluation

Model output was evaluated against multiple benchmark datasets. First, we compared simu-
lated net ecosystem production (NEP) and evapotranspiration (ET) at an alpine tundra site
against in situ observations (2008–2011) at the Arou eddy covariance flux measurement tower
site (Fig. 1b). The data were provided by the Cold and Arid Regions Science Data Center (Liu
et al. 2018). The simulated monthly NEP and ET values had excellent correspondence with the
measured values, with R2 values of 77% and 84% and RMSE values of − 12.5 g C m−2 and −
2.6 mm for NEP and ET, respectively (Fig. 2a, b).

At the regional scale, the model output had moderately successful agreement with bench-
mark datasets. Simulated NPP over forestlands agreed well with the MODIS NPP in terms of
interannual variability (r = 0.86, p < 0.01) (Fig. 2c). The simulated total NPP (364.4 ±
29.9 g C m−2 year−1, mean ± one standard deviation hereafter) was clearly larger than the
MODIS NPP (272.5 ± 18.0 g C m−2 year−1) during 2000–2012, although NPP by tree (208.2 ±
29.9 g C m−2 year−1) was lower. A similar phenomenon was observed in the maximum LAI
when compared to the GLASS LAI products, where the model overestimates total LAI (Fig.
2d). We also compared the simulated ET with the 1 km estimates produced by ETWatch (Wu
et al. 2016). ETWatch is based on multi-source remotely sensed data and has been
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demonstrated to accurately estimate ET for semiarid regions with an accuracy greater than
90.7% (Wu et al. 2016). The ET estimated by MC2 was slightly higher than that estimated by
ETWatch (Fig. 2e). These overestimates are reasonable since grazing effects are not simulated
by MC2 and grazing may reduce NPP, LAI, and ET contributions by grass (Liu et al. 2017).
Additionally, the simulated streamflow (~ 210 mm year−1) was comparable to the previous
estimates (~ 185 mm−1) (Yang et al. 2015; Yang et al. 2017) over the entire UHRB during the
2001–2010 period.

The model captured the broad spatial patterns of vegetation distribution—particularly the
cold barren and alpine tundra—with a general agreement of 59% during 2001–2010 (Figs. 2f
and A2). There were high disagreements in some areas dominated by forest and shrub/grass. In
particular, the simulated potential forestland area was 1.77 times the actual forest area (Fig. 2f).
The disparity might be attributed to the difference between potential and actual natural
vegetation and the data limitations that will be discussed later. For example, long-term human
activities such as farmland reclamation and grazing may have affected vegetation distribution

Fig. 2 Comparisons of the simulated net ecosystem production (NEP) (a) and evapotranspiration (ET) (b) with
in situ observations at the Arou eddy covariance flux tower site, simulated watershed mean annual net primary
production (NPP) (c), leaf area index (LAI) (d), and ET (e) with remotely sensed estimates over forests, and the
simulated potential vegetation with observed actual vegetation (f) in the Upper Heihe River Basin. Since
simulated LAI and NPP for each grid cell are composed of two parts, tree and grass, we compare the remotely
sensed estimates with the simulated total (tree + grass) and the tree portion separately
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in the study area (Cheng et al. 2014), a mechanism not simulated in our study. The 1-km
spatial resolution of the climate data may also contribute to the error in biogeography, as many
topographic features and associated climate factors at finer scales may help determine vege-
tation biogeography (Fig. A1) (Qin et al. 2016b).

3 Results

Ecosystem characteristics simulated by MC2 exhibited distinct trends from 1960 to 2080
under the RCP4.5 climate change scenario. Below, we characterize those trends as well as
contrast projected future (2051–2080) ecosystem characteristics vs. historic (1961–1990)
characteristics. Fire effects simulated by MC2 were negligible, with an annual mean carbon
loss of only 0.06 g C m−2 due to fire (Fig. A3).

3.1 Changes in potential vegetation distribution

Climate change is projected to substantially alter vegetation distribution in the UHRB (Fig. 3).
The UHRB was dominated by alpine tundra and cold barren vegetation types in the 1960s,
occupying 35.3% and 35.7% of the total area, respectively (Fig. 3a). One of the most striking
patterns of vegetation shifts is the conversion of the cold barren type to alpine tundra (Fig. 3d–
e). Concurrently, the conversions from alpine tundra to shrub/grassland and from shrub/
grassland to forest were also significant. For example, approximately 11.2% and 55.9% of
the shrub/grasslands in the 2000s and the 2070s were alpine tundra in the 1960s. In our
simulation, approximately 12.2% of the shrub/grasslands in the 1960s were transformed into
forests by the 2000s and 35.5% of the shrub/grassland in the 2000s shifted into forests by the
2070s. Overall, approximately 21.4% of the study area has been simulated to have shifted in
potential vegetation type during the past 50 years (Fig. 3d), and 42.6% of the land area was
projected to undergo a change by the 2070s compared to the 2000s (Fig. 3e).

Fig. 3 Spatial distributions of the simulated potential vegetation over the 1960s (a), 2000s (b), and 2070s (c), and
the vegetation shifts between time periods (d, e, f) in the Upper Heihe River Basin
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Inter-decadal changes of area percentages of different vegetation types are presented in
Supplementary Material Fig. A4. Alpine tundra showed little change prior to the 1980s and
then increased dramatically to 55.4% in the 2020s, followed by a small decrease. Cold barren
land decreased continuously and sharply after the 1980s to only 2.5% in the 2070s. Compar-
atively, the shrub/grassland remained nearly constant at approximately 21% in the past 50 years
and is projected to increase gradually to 30.8% by the 2070s. Forests expanded consistently
from 7.4% in the 1980s to 17.3% in the 2070s. Desert, occupying less than 1% of the total land
area, showed little change during the entire study period.

Projected shifts in vegetation types are associated with changes in productivity, as reflected
in the maximum LAI. Before the mid-1980s, the maximum LAI averaged across the region
remained stable but is projected to exhibit a sharp increase thereafter (Fig. 4a). LAI trends
varied greatly across space. It increased in high elevation areas dominated by cold barren and
alpine tundra and low mountains dominated by desert and shrub/grass, but decreased in mid-
mountain areas dominated by shrub/grass and forest (Fig. 5a, b). On average, a 44% increase
of maximum LAI (2.48 vs. 1.72 m2 m−2) was projected in the future (represented by the mean
estimate in 2051–2080) relative to historical conditions (1961–1990).

Fig. 4 Simulated maximum LAI (a), net primary productivity (NPP) (b), heterotrophic respiration (RH) (c), net
ecosystem productivity (NEP) (d), total vegetation carbon (e), soil organic carbon (SOC) (f), total ecosystem
carbon (g), evapotranspiration (h), and streamflow (i), for the Upper Heihe River Basin. Future simulation is
based on RCP4.5 climate change scenario. Slope, the coefficient of determination (r2) and significance (p) shown
are calculated from linear regression separately for values in the historical period (1961–2010) and for values in
the future (2011–2080)
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3.2 Changes in carbon budgets

Climate change exerted a strong effect on the simulated carbon dynamics of the study area.
The area-weighted mean NPP increased significantly from the mid-1980s, with an annual
increase rate of 1.80 g C m−2 year−1 from 1961 to 2010 (Fig. 4b). In the future, the NPP was
projected to increase at a much lower rate at 0.45 g C m−2 year−1. Heterotrophic respiration
(RH) exhibited a similar trend (Fig. 4c), but its annual growth rate was clearly lower than that
of the NPP in the past and slightly higher than the NPP in the future. Consequently, the UHRB
switched from being nearly carbon neutral (NEP < 5 g C m−2 year−1) to becoming a carbon
sink (positive NEP) during 1961–2010. The carbon sink strength was simulated to reach a
maximum of approximately 20 g C m−2 year−1 in 2040 and then decrease gradually afterwards
(Fig. 4d). The cumulative carbon sequestration was projected to reach 1.2 kg C m−2 by 2080.
Ecosystem carbon pools, including biomass, SOC, and total ecosystem carbon, decreased

Fig. 5 Maps of historical (1961–1990) averages of key ecosystem variables and their projected changes in the
future (2051–2080). The ecosystem variables are maximum leaf area index (LAI) (a, b); net primary productivity
(NPP) (c, d); heterotrophic respiration (RH) (e, f); net ecosystem productivity (NEP) (g, h); total vegetation
carbon (biomass) (i, j); soil organic carbon (SOC) (k, l); total ecosystem carbon (TC) (m, n); and evapotrans-
piration (ET) (o, p)
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slightly prior to the mid-1980s and was then projected to increase consistently by the end of
the study period (Fig. 4e–g). In general, the rate of increase was projected to be higher in the
future than in the past, especially for SOC. For example, the rate of increase of SOC was
7.0 g C m−2 year−1 in the future, 5.3 times the rate estimated for 1961–2010.

There were large spatial variability in carbon fluxes, carbon pools, and their long-term
trends (Fig. 5c–n). The mid-elevations covered mainly by shrub/grass and forests had the
largest NPP and RH (Fig. 5c, e). The combined effect was that the mid-mountains generally
functioned as a weak carbon sink (less than 25 g C m−2 year−1) in the past (Figs. 5g and A5).
Low elevations, covered mainly by desert and shrub/grass, also acted as weak carbon sinks
although with relatively lower NPP. In contrast, cold barren and alpine tundra lands behaved as
carbon sources in 1961–1990 (Fig. A5).

Spatial variability of carbon fluxes extended into future projections, as evidenced by
increasing fluxes in the high mountains and decreases in the mid-mountains (Fig. 5d, f, h).
On average, NPP and RH increased by 84.9 and 74.7 g C m−2 year−1 in 2051–2080 relative to
the rates in 1961–1990, respectively, leading to a net increase in NEP of 10.1 g C m−2 year−1.
In particular, forest is projected to become a significant carbon source by 2051–2080, while the
cold barren type is projected to become a carbon sink (Figs. 5h and A5). Overall, carbon stocks
showed similar spatial patterns to carbon fluxes (Fig. 5i–n). For example, vegetation biomass,
accounting for 6.4% of the total carbon, was projected to increase by 50.8% (a net increase of
278.2 g C m−2) in the future compared to the baseline (Fig. 5j). Concurrently, SOC is projected
to be enhanced by 12.5% in the future, with a net growth of 1073.3 g C m−2 (Fig. 5l).

3.3 Changes in water budgets

MC2 simulated large increases in ET in the past 50 years, except for a slight decrease prior to
the 1980s (Fig. 4h). However, ET was projected to increase slightly (0.18 mm year−1) in the
future period, albeit with large fluctuations. Spatially, the mid-mountains had relatively higher
ET due to higher precipitation and vegetation productivity (Fig. 5o, p). ET is projected to
increase in the high mountains and decrease in some of the middle mountainous areas in the
future (Fig. 5p) under the RCP4.5 scenario. Modeled streamflow decreased slowly since the
mid-1980s after a period of rapid increase. Streamflow is projected to decrease continuously in
the future at a rate of 0.96 mm year−1 (Fig. 4i). Overall, ET is projected to increase by 21.8%
(287 to 349 mm) in 2051–2080 relative to 1961–1990. Streamflow is projected to decrease by
8.4% (191 to 175 mm) in the future.

4 Discussion

4.1 Impacts of climate change on vegetation distribution

Climate change is expected to bring significant changes to the structure and function of
ecosystems in the UHRB (Fig. 1b). The temperature increase rate of 0.36 °C per decade from
1961 to 2010 was twice of the global average (IPCC 2013) and much higher than the average
for China (Qin et al. 2016a). This is highly consistent with observations that higher rates of
warming are often found in high latitudinal and altitudinal regions (Gobiet et al. 2014). At the
same time, increasing precipitation in the UHRB agrees well with the overall wetting trend
observed in arid/semiarid China (Qin et al. 2016a). Together, these two facets of climate
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change have favored vegetation growth in the UHRB from 1961 to 2010. However, slightly
decreasing precipitation and continuous warming in temperature were projected in the future
(Fig. 1b), which may reduce water availability and create drought conditions that threaten
many of the vegetated ecosystems.

Climate change is projected to drive a considerable amount of vegetation shifts in the
UHRB. The most significant change is a sharp increase in alpine tundra at the cost of the cold
barren vegetation type and a moderate growth of forest and shrub/grass lands (Fig. 3). Overall,
this is in line with remotely sensed observations in the study area. For example, Yang et al.
(2017) found a clear increase in pasture and forestland, with a decrease in barren land and
glacier in the 1980s and 2000s. Zhao et al. (2017) showed that the grassland area (alpine tundra
+ grassland) increased by 19.7% from 1986 to 2011. The loss of the cold barren vegetation
type is also partially corroborated by the significant increase of leaf area index in the high
elevation regions in the UHRB (Liu et al. 2017).

Our findings were highly consistent with the previous findings on mountainous vegetation
shifts in response to climate change (Gottfried et al. 2012; Hickler et al. 2012). Theoretically,
vegetation distributions are mainly determined by climate regimes through species-specific
physiological thresholds of temperature and/or water availability (Woodward 1987). Warming
temperatures favor the growth of warm-adapted species, the process of which is commonly
referred to thermophilization (Gottfried et al. 2012). In particular, the cold barren land would
almost disappear by 2080. Such a potential vegetation shift has already been observed in other
mountain regions such as the Alps (Gottfried et al. 2012). Overall, we project a change of
vegetation of 42.6% of the total study area by the 2070s, which is comparable to projections in
Europe (Hickler et al. 2012; Theurillat and Guisan 2001). For example, Hickler et al. (2012)
indicated that over 42% of the land in Europe would undergo a change in vegetation by the
2080s in the arctic and alpine regions.

4.2 Impacts of climate change on vegetation structure and ecosystem functions

Vegetation structure, as represented by maximum LAI, was strongly influenced by climate
change, with dominant drivers varying over time. In the historical period, the simulated LAI
was overwhelmingly controlled by temperature, with a partial correlation coefficient (r) of
0.82 (p < 0.01) and an independent explanation rate of 74.5% (Table 2). These findings agree
well with the well-established concept that temperature mainly controls vegetation dynamics in
the high elevation regions (You et al. 2018; Zhou et al. 2014). In contrast, precipitation (r =
0.64, p < 0.01) is projected to play a more important role than temperature (r = 0.48, p < 0.01)
in the future. This can be attributed to the increasing water stress caused by warming
temperatures and decreasing precipitation (Fig. 1b). In addition, there is a great deal of spatial
heterogeneity in the LAI trends (Fig. 5b). The mid-mountains exhibit a downward trend,
possibly owing to the stronger control of water availability on vegetation growth as compared
to temperature (Liu et al. 2017). The deceasing precipitation projected for the UHRB (Fig. 1b)
reduces the water availability for plant growth in those areas.

Carbon fluxes and sequestration potential are projected to change dramatically in the future (Fig.
4b–i). The area-weighted mean NPP is simulated to have increased significantly in the past (Fig.
4b), driven primarily by temperature increase (Table 2). Because temperatures are generally lower
than the optimal temperatures for plant growth in the UHRB (You et al. 2018), warmer temper-
atures can enhance productivity and biomass formation by lengthening the growing season and
promoting photosynthesis where ample moisture is available (Nemani et al. 2003). At the same
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time, elevated CO2 can influence NPP with the “CO2 fertilization effect” (Cramer et al. 2001),
where photosynthetic rates increase and water loss is reduced via closure of the stomata. However,
soil water losses associated with rising temperatures may largely dwarf the positive effects of
temperature. This may explain the much lower rates of increase in NPP in the future when
precipitation tends to decrease (Fig. 4b). In fact, future NPP variability was found to be mainly
controlled by precipitation though temperature also matters (Table 2). The concurrent increase in
RH (Fig. 4c) is consistent with the acceleration of biospheric metabolism reported by Luo et al.
(2001). The link between temperatures and RH is verified by the significant positive relationship
between the two (Table 2). NEP, representing the carbon sequestration potential, fluctuated
substantially year-by-year and generally increased in the historic period (Fig. 4d). The carbon sink
strength in the UHRB is projected to reach its upper limit by approximately 2040, agreeing well
with the findings by Tao and Zhang (2010) in China. Overall, we estimated a net carbon sink of
7.3 g C m−2 year−1 in the UHRB over the past 50 years, which was much lower than the area-
weighted mean estimate in China (23.3–31.9 g Cm−2 year−1) (Piao et al. 2009), suggesting a weak
contribution of arid mountainous ecosystems to global carbon sequestration.

Simulated carbon budgets vary spatially and temporally in the UHRB. Mid-mountains that
have themost favorable water and heat conditions exhibited larger NPP, RH, andNEP values than
other areas at either high or low elevations (Fig. 5c–n). With the warming and drying climate in
the future, carbon fluxes will be largely enhanced in the high mountains and reduced in the mid-
mountains owing to the possible contrasting driving mechanisms. High mountains are over-
whelmingly controlled by temperature. Elevated temperatures can increase the vegetation pro-
ductivity and greening when moisture is not limiting (Nemani et al. 2003). In particular, lands
covered by the cold barren vegetation type previously are projected to become the largest carbon
sink across the UHRB in the future (Fig. A3). Comparatively, the mid-elevations are dominated
by both temperature and water availability. Increasing temperature and/or decreasing precipitation
would exacerbate the water shortages, therefore reducing the vegetation productivity. This would
result in ecosystems switching from carbon sinks to carbon sources in the future (Fig. A5).

Table 2 Partial correlation coefficients (r) between annual mean temperature (T) and ecosystem variables while
holding annual precipitation (P) as the control variable, and between P and ecosystem variables while holding T
as the control variable during historical (1961–2010) and future (2011–2080) time periods. The independent
explanation rate (R2, %) of P and T was derived from stepwise multiple linear regression analysis

Ecosystem variables Correlation Historical (N = 50) Future (N = 70)

T P Total T P Total

Maximum leaf area index r 0.82+ 0.24 0.48+ 0.64+

R2 74.9+ 1.4 76.3 15.9+ 31.3+ 47.2
Net primary production r 0.81+ 0.12 0.43+ 0.60+

R2 72.6+ 0.4 73.0 13.0+ 28.6+ 41.6
Heterotrophic respiration r 0.78+ 0.29* 0.65+ 0.51+

R2 70.6+ 2.5* 73.0 31.6+ 17.9+ 49.5
Net ecosystem production r 0.55+ − 0.07 − 0.02 0.42+

R2 33.9+ 0.3 34.2 18.2+ 18.2
Evapotranspiration r 0.78+ 0.64+ 0.42+ 0.78+

R2 68.4+ 13.0+ 81.5 8.0+ 54.0+ 62.0
Streamflow r − 0.75+ 0.96+ − 0.23 0.96+

R2 9.5+ 83.0+ 92.5 0.4 91.7+ 91.9

+ Significant at the 0.01 level

*Significant at the 0.05 level
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Simulated water balance also exhibited strong future trends because water and carbon are
intrinsically coupled. The simulated ET, on average accounting for 73% of the total precipi-
tation, increased significantly from the mid-1980s due to climate change-induced increases in
vegetation productivity and potential evapotranspiration (Zhou et al. 2014). It was projected to
increase at a rather low rate in the future, most likely owing to the small decrease in
precipitation (Fig. 1b) and slow increase in LAI (Fig. 4a). As with NPP, the interannual
variability of ET is mainly controlled by temperature in the past and by precipitation in the
future (Table 2). Spatially, higher ET has been observed in the mid-mountains, echoing the fact
that forest contributed little to the water yield in the UHRB (Ruan et al. 2017; Zhang et al.
2015). In contrast, the alpine tundra and cold barren lands contributed mainly to the water yield
in the UHRB, which was highly consistent with previous findings (Yang et al. 2015; Ruan
et al. 2017). Modeled streamflow decreased continuously since the mid-1980s and the trend
will continue in the future due to the decrease in precipitation and the increase in ET,
suggesting the possible exacerbation of water shortages in the entire river basin in the future.
In contrast to ET, changes in streamflow were mainly determined by precipitation regardless of
the time period (Table 2). Note that declines are seen in simulated LAI, NPP, RH, and ET from
2010 to 2020 (Fig. 4). This is likely an artifact of the model transitioning from the historical to
future climate data.

4.3 Implications and uncertainties

This study presents a comprehensive, long-term assessment of the vegetation distribution and
ecosystem dynamics in response to climate changes in the UHRB. This type of exploration is
key for formulating the effective management strategies of local ecosystems (Zhou et al.
2014). Significant changes are projected in potential vegetation types, vegetation structure, and
ecosystem functions in the UHRB, which may seriously impact the provision of ecosystem
services and may therefore impact the livelihoods of local residents. In particular, the projected
decrease in streamflow in the UHRB will exacerbate water shortages in the middle-lower
reaches of the river basin, highlighting the need for more sustainable land management policy
and water resource management strategies in the future. For example, the large-scale refores-
tation practices implemented in the study area since 2001 may be problematic given the high
water consumption of forests.

Our results show that MC2 performed reasonably in the mountainous UHRB (Fig. 2),
which may provide a valuable starting point for other applications of DGVMs to arid and
semiarid mountain ecosystems in Asia and beyond. Our MC2 results for 1960–2010 were
generally comparable to the half-degree resolution output from the 15 global terrestrial
biosphere models (TBMs) published by the Multiscale Synthesis and Terrestrial Model
Intercomparison Project (MsTMIP) (Huntzinger et al. 2018). LAI, NPP, and NEP from
MC2 fall well within the range of values in the MsTMIP’s ensemble of outputs (Fig. 6).
However, NPP and ET estimated by MC2 were significantly higher than the MsTMIP
ensemble means: NPP and ET were approximately 1.6 and 1.3 times higher, respectively.
These comparisons both corroborate the reasonable calibration of MC2 and highlight the
possibility that a regionally calibrated high-resolution simulation may capture ecosystem
dynamics of mountainous regions that substantially differ from global applications of
vegetation models.

Evidence of a good model calibration, notwithstanding large uncertainties remain in
dynamic vegetation simulation of the UHRB. We identify several opportunities to improve
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the input data. First, although the climate data used in this study have been demonstrated to be
generally reliable (Ruan et al. 2017), the 1-km spatial resolution may not adequately capture
the heterogeneity of microclimates in the UHRB. In particular, slope and aspect may be
important factors. Qin et al. (2016b) reported that the vegetation cover, biomass, and SOC
on the semi-shady slopes were approximately two times greater than those on the south-facing
slopes. Second, we used a future climate projection from a single regional climate model.
While the projected warming trend is consistent with warming projected by general circulation
models (GCMs), the drying trend projected by the RIEMS 2.0 was contrary to the wetter trend
projected by the GCMs (Fig. 1d). In addition to using a single regional climate model, we used
only one climate change scenario (RCP4.5). Although RCP4.5 has no probability associated
with it (IPCC 2013), using a large ensemble of GCMs with multiple RCPs would more
robustly capture the range of possible future changes for the UHRB and quantify the
uncertainty arising from GCMs and RCPs. Furthermore, Peterman et al. (2014) found that
the MC2 model is very sensitive to soil depth in simulations of carbon and hydrological
variables, with correlation coefficients of 0.82. Although the soils data we used were superior
to global soil datasets, improved soils data with more samples could alter model outputs,
especially in alpine area within the UHRB where only 105 soil profiles were sampled (Yang
et al. 2016).

Fig. 6 Maximum leaf area index (a), net primary productivity (b), net ecosystem productivity (c), and
evapotranspiration (d) simulated by MC2, with corresponding data from the 15 global terrestrial biosphere
models (TBMs) published in the Multiscale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP)
(Shim et al. 2014). TBM outputs were clipped to the Upper Heihe River Basin. As with MC2, the TBMs are
driven by climate, land cover, and atmospheric CO2 data. BIOME-BGC also simulates the impact of nitrogen
deposition. The light gray shaded area represents one standard deviation of the 15 TBM ensemble mean
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MC2 model structure imposes some limitations. First, MC2 runs on a monthly time step,
which may not effectively reflect the effects of weather extremes and freezing/thawing pro-
cesses on the vegetation shifts and the carbon/water cycles (Beckage et al. 2008; Dolezal et al.
2016; Wipf et al. 2009; Yang et al. 2015). For example, increasing extreme snowfall events in
the UHRB (Li et al. 2014) may significantly decrease vegetation cover for both alpine and
subalpine communities, with lasting effects (Dolezal et al. 2016). Additionally, warming-
induced early snowmelt usually leads to frequent night frosts detrimental to alpine vegetation
(Beckage et al. 2008; Dolezal et al. 2016). Second, there are many potentially important
ecological processes not simulated byMC2, such as disease, insect outbreaks, invasive species,
survival and dispersal capabilities of species, and evolutionary adaptation (Sheehan et al. 2015).
Third, our simulations did not directly simulate anthropogenic disturbance, which may partly
account for the difference between model output and observation data.

5 Conclusions

Our simulation results show that climate change may have driven substantial shifts in
vegetation distribution in the UHRB in the recent past, and characterizes future shifts under
the RCP4.5 climate change scenario. The cold barren vegetation type, covering over one-third
of the land area in the 1960s, is projected to nearly disappear by the 2070s. Concurrently,
ecosystem structure and function are projected to be greatly altered by climate change. The
UHRB is simulated to have experienced increases in leaf area index, vegetation productivity,
heterotrophic respiration, and evapotranspiration from1961–2010, and those trends are
projected to continue into the future, albeit at lower rates. Notably, MC2 simulates a decrease
in watershed streamflow since the mid-1980s, and after a period of rapid increase in the near
future, the model projects a continued decrease into the future, suggesting possibly severe
water shortages in the middle-lower reaches of the watershed. Additionally, MC2 simulates
large spatial variability of the vegetation dynamics in response to climate change. These results
provide important insights to local land/water management strategies and other applications of
DGVMs to mountainous regions. Future studies should continue to improve the input data and
model structure to more robustly quantify the potential ecosystem dynamics.
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