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A B S T R A C T   

Droughts that are hotter, more frequent, and last longer; pest outbreaks that are more extensive and more 
common; and fires that are more frequent, more extensive, and perhaps more severe have raised concern that 
forests in the western United States may not return once disturbed by one or more of these agents. Numerous 
field-based studies have been undertaken to better understand forest response to these changing disturbance 
regimes. Meta-analyses of these studies provide broad guidelines on the biotic and abiotic factors that hinder 
forest recovery, but study-to-study differences in methods and objectives do not support estimation of the total 
extent of potentially impaired forest succession. In this research, we provide an estimate of the area of potentially 
impaired forest succession. The estimate was derived from modeling of an 18-year land cover and Normalized 
Difference Vegetation Index (NDVI) time series supported by an extensive ancillary dataset. We estimate an 
upper bound of approximately 3470 km2 of disturbed forest that may not return or reattain prior composition 
and structure. Based on the data used, fire appears to be the main disturbance agent of impaired forest suc-
cession, although climatic factors cannot be discounted. The numerous field studies routinely cite distal seed 
sources as a factor that hinders forest recovery, and we estimate that 20 % of the upper bound estimate has no 
forest cover within a 4.4-ha neighborhood. Our upper bound estimate is about 0.5 % of the 2001 mapped extent 
of western United States forests. The estimate is cognizant of measurement and modeling uncertainties (i.e., 
upper bound) and uncertainties related to successional rates and trajectories (i.e., potential).   

1. Introduction 

Across the western United States, climate-mediated alteration of 
disturbance regimes has raised concerns that forests may not return or 
reattain prior composition and structure following disturbance (Davis et 
al 2019; Halofsky et al. 2020; Turner et al. 2019). Fire season length and 
area burned are two aspects of the western United States fire regime that 

appear to be increasing (Abatzoglou et al. 2017). Hicke et al. (2016) 
reported increases in mortality related to fire and bark beetle outbreaks 
beginning in the late 1990s. Numerous field-based studies following 
fires have reported lagging forest recovery (Chambers et al. 2016; 
Collins & Roller 2013; Davis et al. 2019; Haffey et al. 2018; Harvey et al. 
2013; Owen et al. 2017; Tepley et al. 2017). Absence of proximal seed 
sources and moisture stress appear to be the two most common factors 
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that hinder recovery (Korb et al. 2019; Stevens-Rumann and Morgan 
2019). 

The concern over the effects of changing disturbance regimes, 
especially fire, on forest recovery has fostered numerous field-based 
investigations. Meta-analyses of these studies (Korb et al. 2019; 
Stevens-Rumann and Morgan 2019) identify ecological factors that in-
fluence forest recovery (e.g., drought). However, because local in-
vestigations vary widely in terms of data collected and study objectives 
it is not possible to compile data from field investigations to estimate the 
areal extent of forests that may not return or reattain prior composition 
and structure. Field studies provide valuable information on the 
ecological context of forest recovery, but the information they provide 
cannot be used to answer the question – what is the areal extent of po-
tential forest conversion across the western United States? 

Our primary objective is to demonstrate the use of temporal synoptic 
data to provide an estimate of the area of potential forest conversion. For 
this work we adopt the definition of forest conversion offered by Coop 
et al. (2020, p. 660) – a disturbance causes a substantial shift in vege-
tation composition and structure (e.g., stand-replacing fire) and recov-
ery agents (e.g., seed rain, precipitation) are either ineffective or absent, 
resulting in forest recovery that is delayed, arrested (Korb et al. 2019; 
Stevens-Rumann and Morgan 2019), or does not return to its prior 
composition and structure (Owen et al. 2017; Turner et al. 2019). We 
use temporal land cover data and vegetation indices spanning nearly a 
20-year time frame to develop an estimate of forest conversion. To 
support our remote sensing-based estimate we add numerous ancillary 
data. The ancillary data provide measurements related to ecological 
context and other information that can be used to further scrutinize the 
base remote sensing estimate. 

Our use of remotely sensed data to estimate the potential extent of 
forest conversion is an effort to monitor forest recovery. No benchmark 
is recognized for the amount of time needed to make confident assess-
ments of successional outcomes (Stevens-Rumann and Morgan 2019). 
Succession is a conceptual model (Donato et al. 2012) that is governed 
by drivers that vary in space and time (Tepley et al. 2018). Field-based 
studies of forests indicate the pace, pathway, and ultimate successional 
outcome may be different for two nearby sites (Keeling et al. 2006; Yang 
et al. 2005). Ouzts et al. (2015) observed that recovery of ponderosa 
pine (Pinus Ponderosa), a geographically widespread, canopy-dominant 
species in the western United States, is not predictable. The nearly 20- 
year time span on which our results are based is governed by data 
availability and also intentionally agnostic of the time needed to make 
confident determinations about successional outcomes. At least three 
factors support our adoption of agnosticism regarding the pace and 
trajectory of succession. (1) Short-term successional trends can be in-
dicators of future outcomes (Stevens-Rumann et al. 2018). Stoddard 
et al. (2018) measured ponderosa pine and Douglas fir (Pseudotsuga 
menziesii) regeneration prior to and 1, 10, and 15 years post fire and 
reported no seedlings of either species one year post fire and no seed-
lings of either species 15 years post fire, regardless of fire severity. (2) 
Monitoring is a key element of adaptive management (NRC, 2004; 
Williams 2011). The numerous field-based studies on forest recovery, 
typically collected shortly after disturbance (Korb et al. 2019; p. 14), are 
examples of adaptive management – data on recovery are collected so 
that subsequent management is more likely to produce desired outcomes 
(e.g., forest recovery). Meta-analysis of these field-based studies (Korb 
et al. 2019; Stevens-Rumann and Morgan 2019) conclude their reviews 
with a discussion of management options. Others have reported positive 
post-disturbance outcomes resulting from active management (Collins 
et al. 2011; Ouzts et al. 2015; Shive et al. 2013). (3) Our use of remotely 
sensed data to monitor forest recovery is based qualitatively on an in-
clusive view of commission and omission error (Foster 2001). Pre-
scribing a successional framework in the absence of precise knowledge 
on rates and trajectories risks omission of locations that are indeed un-
dergoing forest conversion simply because they are thought occur in an 
area where it has been accepted that succession moves slowly. We view 

acceptance of a potentially higher rate of commission (Type II) error as 
appropriate to help ensure minimization of omission of areas where 
forest conversion may be occurring (Type I error). 

2. Methods 

2.1. Study area 

The region of interest is the western United States, extending from 
about 102◦ W to 124◦ W and 29◦ N to 49◦ N (study area map is presented 
in the results). The total area of the region is about 3,465,300 km2. El-
evations range from below sea level to about 4420 m (14,500 ft). Cli-
matic regimes (Trewartha 1961) are predominantly arid to semi-arid, 
except along the northern half of the Pacific Coast. Precipitation profiles 
are Mediterranean (winter maximum) along the Pacific coast, changing 
to more uniform and summer maximum profiles moving eastward 
(Trewartha 1961, p. 268). 

2.2. Data 

We used the 2016 National Land Cover Database (NLCD2016) 
(Homer et al. 2020; Yang et al. 2018), a U.S. Federal Geographic Data 
Committee (FGDC) National Geospatial Data Asset (FGDC, 2021), as our 
base dataset to identify potential forest conversion. NLCD2016 provided 
time integrated land cover (land cover at time t informs land cover at 
time t − 1) for 2001, 2004, 2006, 2008, 2011, 2013, and 2016 from the 
Landsat Thematic Mapper (TM) satellite at the sensor’s native 30 m-x- 
30 m (0.09 ha pixel− 1) spatial resolution. We used the NLCD2016 data to 
create a dataset, we hereafter refer to as persistent forest loss. Persistent 
forest loss was defined as forest in 2001 and either shrubland or grass-
land only in all remaining dates of NLCD2016 land cover. Conversion of 
forest to other NLCD2016 land cover classes (e.g., forest to urban) were 
not considered persistent forest loss. 

Annual summer maximum Landsat Normalized Differenced Vegeta-
tion Index (NDVI) (Holben 1986) for the years 2001 through 2019 were 
used to disentangle potential forest conversion from persistent forest 
loss by monitoring vegetation response following forest loss between 
2001 and 2004. We defined summer as June, July, August, and 
September (JJAS). September was added to the traditional Northern 
Hemisphere summer months to increase NDVI data availability in 
cloudy areas; this exception was not extended to other data summarized 
over the summer. Collection 1 (top of the atmosphere) scenes re-
quirements included L1TP processing (https://www.usgs.gov/core-scie 
nce-systems/nli/landsat/landsat-levels-processing?qt-science_suppo 
rt_page_related_con=2#qt-science_support_page_related_con) and <20 
% cloud cover. NDVI processing was done in Google Earth Engine and 
converted from the inherent NDVI scale (-1 to 1) to 8-bit scale (0–255) to 
facilitate download. Once downloaded, the NDVI data were projected 
(nearest neighbor) into the NLCD Alber’s equal area projection and 
converted back to its native, − 1 to 1 scale. NDVI was based on Landsat 5 
for the years 2001 through 2011, Landsat 7 for 2012, and the Opera-
tional Land Imager (Landsat 8) for the years 2013 through 2019. 
Equations developed by Roy et al. (2016) were used to adjust NDVI from 
Landsat 5 and 7 to Landsat 8. Further, only persistent forest loss pixels 
with a complete 19-year record of NDVI were considered valid, and 
NDVI values < 0 were considered invalid (Myneni et al. 1998; Tucker 
et al. 1986). About 1.5 % of persistent forest loss area was discarded 
because of an incomplete temporal record or invalid data. 

2.3. Potential forest conversion from persistent forest loss 

K-means, time series clustering (Aghabozorgi et al. 2015) of 2001 – 
2019 NDVI was used to identify persistent forest loss that may be po-
tential forest conversion. Criteria for cluster evaluation included 
goodness-of-fit and cluster integrity. Performance was assessed for 
outcomes with 2 to 20 clusters in steps of 2. Cluster separation (Arbelaitz 
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et al. 2013) served as the measure of goodness-of-fit. Cluster separation 
was measured as the proportion of observations whose distance to its 
cluster centroid was < ½ of the centroid-to-centroid distance between 
the cluster to which the observation was assigned and the nearest cluster 
(Ebert et al. 2021). Observations meeting this goodness-of-fit (fit) cri-
terion were unambiguous members of the cluster to which they were 
assigned. The overall NDVI trend (2019 NDVI minus 2001 NDVI) was 
used to assess cluster integrity. For all observations within a cluster, the 
overall trend should be negative, positive, or close to zero (0) (e.g., 
− 0.05 to 0.05). 

The evaluation criteria were applied to several different sets of input 
variables, including all 19 NDVI variables, a kernel density trans-
formation of the 19 NDVI variables that reduced the number of inputs 
from 19 to 5 (i.e., kernel density estimates for histogram benchmarks of 
0.00, 0.25, 0.50, 0.75 and 1.00), and reduced sets of the NDVI variables, 
including the overall trend (2019 NDVI – 2001 NDVI). All input vari-
ables were transformed using Euclidean distance prior to their input into 
K-means clustering. 

2.4. Data quality 

We evaluated data quality in three ways. The NDVI time series for 
persistent forest loss was compared to the NDVI time series from a 
random sample (Supplemental Information) of stable forest (upland 
forest in all seven land cover dates in NLCD2016). This comparison was 
undertaken to confirm and quantify NDVI time series differences be-
tween stable forest and persistent forest loss. We used the non- 
parametric L2-norm statistic (

∑
(√(a − b)2)) for the comparison 

(Lhermitte et al. 2011). L2-norm approaches 0 as the similarity between 
two time series increases. The comparison was used to gauge the like-
lihood that a 2001 – 2019 NDVI time series for persistent forest loss 
could replicate a 2001 – 2019 NDVI time series for stable forest. We used 
the 50th percentile NDVI value for each year for the L2-norm compar-
isons. Comparisons were based on the persistent forest loss groups 
realized from time series clustering. Each persistent forest loss cluster 
was compared to stable forest. We used the L2-norm for the 40th and 
50th percentiles of stable forest as a reference value to gauge the 
magnitude of the L2-norm differences between stable forest and the 
persistent forest loss clusters. Differences in L2-norms between persis-
tent forest loss and stable forest larger than the reference value would 
indicate that the 40th percentile of stable forest more closely replicated 
the 50th percentile of stable forest than the 50th percentile of a persis-
tent forest loss cluster. 

A second means of data quality assessment relied on the North 
American Forest Dynamics (NAFD) project (Schleeweis et al. 2020). 
NAFD provides a Landsat-based assessment of forest change from 1986 
to 2010 and assigns a cause of change to forest loss: stable (unchanged), 
removal (harvest), fire, stress, conversion, other, and wind. We 
compared results from time series clustering of persistent forest loss to 
NAFD loss attributions. Third, data quality was assessed by comparing 
persistent forest loss to the reference data collected for the NLCD2006, 
NLCD2011, and NLCD2016 accuracy assessments (Wickham et al. 2013, 
2017, 2021) for the few locations where they were coincident (Sup-
plemental Information). Persistent forest loss was coincident with the 
locations used for reference data collections from previous NLCD accu-
racy assessments for 130 locations. In addition, we report forest loss 
accuracies from previous NLCD accuracy assessments. 

2.5. Ancillary data 

NAFD is one component of an accompanying persistent forest loss 
dataset (Table 1). The ancillary data include information on topography, 
climate, fire, mortality from pest infestations and other disease agents, 
forest dynamics, and derivatives from the time series cluster analysis 
and NLCD. Complete descriptions of the data sources and the indicators 
derived from them are provided in the Supplemental Information sec-
tion. These data were used to examine classification results in the 
context geographic patterns (e.g., topography, climate), stressors (fire, 
pests), and spatial factors related to the likelihood of forest regeneration, 
in addition to data quality. 

3. Results 

3.1. Time series clustering of persistent forest loss 

About 10,535 km2 were forest in 2001 and either shrubland or 

Table 1 
Data sources (a) and indicators (b) for examining patterns of forest disturbance 
and recovery.   

(a) Data 
Sources1 

Description 

MTBS Monitoring Trends Burn Severity - annual data (2002 – 2018) on 
fire severity (raster) and fire perimeters (vector); 900 m2 

resolution (https://www.mtbs.gov). 
PRISM Parameter-elevation Regressions on Independent Slopes model - 

climatic data; 4-x-4 km resolution (https://prism.oregonstate. 
edu). 

NLCD2016 National Land Cover Database (2016) - land cover, tree canopy 
cover, impervious cover; 900 m2 resolution (https://www.mrlc. 
gov) (https://data.fs.usda.gov/geodata/rastergateway/treecan 
opycover/). 

Protected Areas Protected Areas Database (PAD-US; version 2.1) (https://www. 
usgs.gov/GAP). 

Togography National Elevation Dataset (NED) - elevation, slope, aspect; 900 
m2 resolution (https://www.sciencebase.gov/catalog/item/4f 
cf8fd4e4b0c7fe80e81504) 

LANDFIRE (LF) Raster map of vegetation types; 900 m2 resolution (https://www. 
landfire.gov).  

IDS Insect & Disease Survey (https://www.fs.fed.us/foresthealth/app 
lied-sciences/mapping-reporting/detection-surveys.shtml) 

NAFD North American Forest Dynamics project; 900 m2 resolution 
(https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1799) 

Indicators1  

Elevation Height above mean sea level (format = integer; unit = m) 
Slope Rise/run (%) 
Aspect Solar azimuth (degrees) 
nyrs Number of years with valid NDVI values 
dRng 2019 NDVI – 2001 NDVI 
nFire 

∑
moderate severity fire occurrences (2001 – 2018) 

hFire 
∑

high severity fires occurrences (2001 – 2018) 
xFire 

∑
moderate + high fire occurrences (2001 – 2018) 

xFire0204 
∑

moderate + high fire occurrences (2002 – 2004) 
CumSpr Cumulative 

∑
of maximum vapor pressure deficit (VPD) 

anomalies (2001 – 2019) for MAM (hPa) 
CumSmr Cumulative 

∑
of maximum VPD anomalies (2001 – 2019) for 

JJA (hPa) 
fs7 Density of NLCD2016 upland forest pixels in 7- x 7-pixel (4.4 ha) 

window (%/100) 
UrbS7 Density of NLCD2016 urban pixels in a 4.4-ha window (%/100) 
AgS7 Density of NLCD2016 agriculture pixels in a 4.4-ha window 

(%/100) 
Protected Protected status (1 or 2 = protected; 0 = not protected) 
TCC NLCD2016 Tree Canopy Cover (0 – 100 %) 
LF_EVT LANDFIRE Vegetation class 
LF_EVTr LANDFIRE Vegetation class (aggregated) 
Cluster Output from time series cluster analysis 
Dist Euclidean distance from observation to cluster centroid 
Gap Euclidean distance from cluster centroid to nearest cluster 

centroid 
Fit Equals 1 if Dist < (Gap/2); otherwise = 0 
PtchSz Persistent forest loss patch size (# pixels; 1 pixel = 0.09 ha) 
IDS0204 Identified tree mortality in 2002, 2003, or 2004 from Insect & 

Disease Survey 
FDyr NAFD year of disturbance (value + 1970) 
FDtype NAFD disturbance type (e.g., fire) 
FDconf NAFD difference between 1st and 2nd most common Random 

Forest result  

1 Data sources and indicators are described in Supplemental Information 
section. 
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grassland in 2016 (i.e., persistent forest loss). The 4-group solution 
provided the best performance when evaluating goodness-of-fit and 
cluster integrity in tandem (Fig. S1 and S2; Table S1). Goodness-of-fit for 
the 4-group solution was 78 % (Table 2). Groups 1 and 2 had negative 
overall trends and groups 3 and 4 had flat and postive overall trends, 
respectively. Mean 2001 NDVI and NDVI trends were distinguishing 
features (Fig. 1). Clusters 1 and 2 had distinctly different mean 2001 
NDVI values and noticeably different mean trends from 2004 onward. 
Groups 3 and 4 had similar mean 2001 NDVI values but dissimilar 
2004–2019 mean NDVI trends. Cluster 1 was also distinct from the other 
three clusters in both the abruptness and magnitude of its 2001–2004 
decline in NDVI and its sharp decrease in mean NDVI after 2017. 
Following the mean NDVI trends, we hereafter refer to clusters 1 and 2 
as potential forest conversion and clusters 3 and 4 as apparent forest 
recovery. The respective total areas of potential forest conversion and 
apparent forest recovery were 3,467 km2 and 6,910 km2; about 160 km2 

(1.5 %) were not evaluated due to a lack of NDVI data (see methods). 
xxx. 

3.2. Geography of potential forest conversion and apparent forest 
recovery 

All clusters were distributed across the western United States, 
although clusters 1 and 2 tended for to be more concentrated in localized 
hotspots than clusters 3 and 4 (Fig. 2). A large portion of cluster 1 
coincided with the 2002 Biscuit fire in southwest Oregon (Donato et al. 
2009) and the 2002 Hayman fire in Colorado (Chambers et al. 2016). 
Similarly, a large portion of cluster 2 was coincident with the 2002 
Rodeo-Chediski fire in east-central Arizona (Owen et al. 2017) and the 
Hayman fire. At a more local scale, clusters were often contagious, 
exhibiting both gradient and mottled patterns over more limited 
geographic extents (Fig. 3). 

3.3. Data quality assessment 

Persistent forest loss and stable forest temporal NDVI trends were 
distinctly different. L2-norms for persistent forest loss versus stable 
forest, regardless of cluster assignment, were larger than the reference 
value of 0.92 (Table 3a). The 40th percentile of the stable forest NDVI 

Table 2 
Area and output statistics from time series cluster analysis.  

Cluster Area (km2) Max D1 Near2 GAP3 Fit4 Min5 Max5 

1 586  0.001080 2  0.000528  0.82  − 0.734  − 0.213 
2 2,881  0.000315 3  0.000277  0.78  − 0.223  − 0.059 
3 4,612  0.000304 4  0.000256  0.81  − 0.062  0.045 
4 2,298  0.001940 3  0.000256  0.71  − 0.083  0.838 
Overall 10,377     0.78    

1 Max D = maximum observation-to-centroid distance. 
2 Near = Nearest cluster. 
3 GAP = centroid-to-centroid distance from cluster to nearest cluster. 
4 Fit = see methods. 
5 Cluster integrity: minimum and maximum values of 2019 NDVI – 2001 NDVI. 

Fig. 1. Annual summer maximum NDVI means for each cluster.  
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trend was more likely to reproduce the 50th percentile of the stable 
forest NDVI trend than the 50th percentile of persistent forest loss, 
regardless of cluster assignment. Greater than 90 % of persistent forest 
loss locations coincided with locations identified by NAFD (Schleeweis 
et al. 2020) as forest loss attributable to removal (harvest), fire, and 
stress, and<0.1 % of persistent forest loss locations were identified as 
conversion (e.g., forest to urban) by NAFD. Agreement between the few 
reference data locations from previous NLCD accuracy assessments that 
were coincident with persistent forest loss ranged from 80 % to 100 % 

(Table 3b). Accuracy of 2011 – 2016 forest loss for NLCD2016 was about 
75 %. User’s accuracies (1 minus commission error) of previous NLCD 
products were slightly higher than 75 % but producer’s accuracies (1 
minus omission error) were lower. 

3.4. Associations between clusters and environmental factors (ancillary 
data) 

Fire was more common at locations comprising the potential forest 

Fig. 2. Percentage1 of cluster area by watershed for clusters (A) 1, (B) 2, (C) 3, and (D) 4. 1 About 80 % of cluster 1, 54 % of cluster 2, 41 % of cluster 3, and 38 % of 
cluster 4 are within watersheds shown in red. Ten (10), 18, 20, and 21 watersheds are shown in red for clusters 1, 2, 3, and 4, respectively. Clusters did not occur in 
watersheds not shown (white). Watersheds = 8-digit hydrologic unit codes from the U.S. watershed boundary database (https://www.usgs.gov/national-hydrograph 
y/watershed-boundary-dataset). State labels: Washington (WA); Oregon (OR), Idaho (ID), Montana (MT), Wyoming (WY), North Dakota (ND), South Dakota (SD), 
Nebraska (NE), California (CA), Nevada (NV), Utah (UT), Colorado (CO), Kansas (KS), Oklahoma (OK), Arizona (AZ), New Mexico (NM), Texas (TX). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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conversion group (clusters 1 and 2) and less common at locations 
comprising the apparent forest recovery group (clusters 3 and 4) 
(Table 4). The two groups were distinguished most clearly by severe 

fires. Locations in the potential forest conversion group were more likely 
to have experienced at least one severe fire than locations in the 
apparent forest recovery group The prevalence of fire across the clusters 
is consistent with their overall mean NDVI trends (Fig. 1). Moderate and 
severe fires were most common in cluster 1 and least common in cluster 
4, and the mean 2019 NDVI minus 2001 NDVI differences for clusters 1 
and 4 were the most strongly negative and positive, respectively. 

Disturbance between 2002 and 2004 (i.e., xFire0204 and IDS0204 in 
Table 1) occurred across 72 % of the persistent forest loss locations. 
During this period, 69 % of persistent forest loss locations experienced 
fire and 15 % occurred in areas that experienced mortality (IDS0204); 
about 12 % of locations experienced both fire and mortality related to 
insect and disease infestations. The relation between fires occurring 
during this period and persistent forest loss clusters was, as expected, 
strongly similar to that reported in Table 4 – 81% of locations in the 
potential forest conversion group (clusters 1 and 2) and 63 % of loca-
tions in the apparent forest recovery group (clusters 3 and 4) experi-
enced at least one moderate or severe fire during this period. However, 
there no relationship was apparent between persistent forest loss clus-
ters and insects and disease mortality. Mortality related to insect and 
disease was distributed roughly uniformly across the persistent forest 
loss clusters. 

Persistent forest loss clusters were not strongly associated with 
elevation (Fig. 4) and there was no association between persistent forest 
loss clusters and moisture stress (Figures S3 and S4). Cluster 1, part of 
the potential forest conversion group, tended to occur at lower eleva-
tions than the other three clusters, but each cluster occurred across 
nearly the entire range of elevations found across the western United 
States. The tendency for cluster 1 to occur at lower elevations was partly 
attributable to its concentration within the Biscuit fire. The maximum 
elevation within the boundary of the Biscuit fire is about 1,370 m (4,500 
ft). 

The relation between cluster membership and elevation was evident 
in the patterns of cluster membership across vegetation types (Table 5). 
Excluding cluster 1, which comprised only about 5 % of all persistent 

Fig. 3. Spatial pattern of persistent forest loss cluster assignment for a 3-km2 region in Colorado, USA. Clusters: 1 ( ), 2 ( ), 3 ( ), 4 ( ); ○ = 39◦ 9′ 35′′ N 105◦ 22′

11′′ W. 

Table 3 
Persistent forest loss data quality: (a) L2-norm statistics (Reference = 0.92) and 
crosstabulation of North American Forest Dynamics (NAFD) cause of forest loss 
by persistent forest loss cluster assignment; (b) Agreement (Agree) between 
persistent forest loss and coincident reference samples from the NLCD 2006, 
2011, and 2016 accuracy assessments and user’s and producer’s accuracy (UA 
and PA) for NLCD forest loss and standard errors (±x%) from those assessments. 
Values = 0.000 are < 0.0005.  

a  Cluster  

Pfl1 1 2 3 4 

L2-Norm 1.59 3.20 1.07 1.81 1.47 
NAFD2 class      
non-Forest  0.035 0.052 0.057 0.056 
Stable Forest  0.007 0.008 0.016 0.020 
Conversion  0.001 0.016 0.000 0.000 
Disturbance  0.956 0.940 0.926 0.924  

b # samples Agree(%)3 UA (%) PA (%)  
NLCD 2016 7 100 74 (±5)4 75 (±5)4  

NLCD 2011 33 94 79 (±2) 5 54 (±5)5  

NLCD 2006 90 80 82 (±1)6 30 (±3)6  

1Pfl = persistent forest loss (see methods); 2 NAFD classes are non-forest, water, 
stable forest, removal (harvest), fire, stress, other, wind, and conversion 
(https://daac.ornl.gov/NACP/guides/NAFD-NEX_Attribution.html). The label, 
disturbance, is an aggregation of removal (harvest), fire, stress, and other. The 
NAFD class, wind, did not coincide with any of the persistent forest loss loca-
tions. The NAFD class, conversion, includes forest loss that is not attributable to 
the other five NAFD loss classes. We interpreted conversion as forest converted 
to an anthropogenic land use (e.g., forest to urban; forest to agriculture). 3 See 
Supplemental Information for agreement definitions; 4 2011 – 2016 forest loss 
(Wickham et al. 2021); 5 2006 – 2011 forest loss (Wickham et al. 2017); 6 2001 – 
2006 forest loss (Wickham et al. 2013). 
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forest loss locations, vegetation classes tended to occur in all clusters in 
roughly even distributions. The ponderosa pine class, for example, 
comprised nearly 20 % of cluster 2, part of the potential forest conver-
sion group, but also comprised a large share of the apparent forest re-
covery group (clusters 3 and 4). Eight vegetation classes comprised at 
least 5 % of cluster 2, ranging from low elevation woodlands (e.g., 
pinyon-juniper) to high elevation forests (e.g., spruce-fir). Given that 
cluster 1 was predominantly located within the boundaries of the Biscuit 
and Hayman fires, it follows that two vegetation classes comprised 60 % 
of its area. 

Variables in the ancillary dataset such as tree canopy cover (TCC) 
(Coulston et al. 2012) and surrounding forest (fs7) can be used as 
ecological context surrogates, which may be useful for further exami-
nation of locations in the potential forest conversion group. The area 
estimate for the potential forest conversion group, 3,470 km2, can be 
combined with TCC and fs7 to determine a location’s proximity to seed 
sources, an important determinant of recovery (Stevens-Rumann and 
Morgan 2019). If TCC is zero (0), seed sources are lacking in the im-
mediate neighborhood and if fs7 is 0 there is no forest cover within a 4.4- 
ha neighborhood surrounding the location. About 20 % of the locations 
in the potential forest conversion group have no tree canopy cover (TCC) 
in its immediate vicinity and no forest cover (fs7 = 0) within a 4.4-ha 

neighborhood surrounding the location (Table 6). 

3.5. Discussion 

We estimated that 3,467 km2 of 2001 forest loss may not return or 
reattain prior structure and composition. Our estimate of potential forest 
conversion is about 0.5 % of the 2001 total mapped upland forest extent 
in the NLCD2016 database (Homer et al. 2020) for the western United 
States. Our results complement meta-analyses of the ecological patterns 
of forest regeneration following disturbance (Korb et al. 2019; Stevens- 
Rumann and Morgan 2019) by adding geographic context and identi-
fying specific locations where ecological conditions may not support 
forest recovery from disturbance. 

Concern over potential forest conversion has focused on ponderosa 
pine and Douglas fir because of their widespread occurrence throughout 
the western United States and their tendency to occupy on warmer, drier 
sites (Davis et al. 2019; Korb et al. 2019). Our results are consistent with 
this concern but also highlight that potential forest conversion may not 
be limited to sites characterized by these species (Stevens-Rumann and 
Morgan 2019). Sites in the potential forest conversion group included 
many other vegetation classes covering a wide range of elevations. 

About 72 % of persistent forest loss co-occurred with fire or mortality 

Table 4 
Proportions of clusters by number of moderate (nfire), severe (hFire), and moderate or severe fires (xFire).   

nFire1 hFire1 xFire1 

Cluster None ≥ 1 ≥ 2 None ≥ 1 ≥ 2 None ≥ 1 ≥ 2 

1  0.524  0.476  0.090  0.292  0.708  0.197  0.077  0.923  0.547 
2  0.686  0.314  0.014  0.455  0.545  0.009  0.159  0.841  0.042 
3  0.652  0.348  0.005  0.639  0.361  0.003  0.297  0.703  0.014 
4  0.739  0.261  0.006  0.722  0.276  0.002  0.466  0.534  0.013  

1 See Table 1 and Supplemental Information for descriptions of nFire, hFire, and xFire. 

Fig. 4. Cluster elevation ranges (whiskers (⊥) extend to minimum and maximum from lower and upper quartiles; mean (●); median (-)).  

J. Wickham et al.                                                                                                                                                                                                                               



Ecological Indicators 146 (2023) 109756

8

attributable to insect and disease agents between 2002 and 2004. Some 
portion of the remaining 28 % is probably attributable to timber pro-
duction, which is common in the Pacific Northwest and likely captured 
in the apparent forest recovery group (clusters 3 and 4). Drought may 
also be a factor. Although there was no association between the 
persistent forest loss clusters and moisture stress, cumulative vapor 
pressure deficit (VPD) anomalies were greater than the 30-year normal 
for more than 75 % of all locations for spring and summer. 

Unexpectedly, there was no difference in VPD across the potential 
forest loss and apparent forest recovery groups. Moisture stress impedes 
forest recovery (Davis et al. 2019; Korb et al. 2019; Stevens-Rumann and 
Morgan 2019). Our results may be at least partly attributable to the 
coarse resolution of the PRISM data (4- x 4-km). For example, a 4- x − 4 
km pixel centered on the peak of Mt. Hood in Oregon would have an 
elevation of 3,430 m (11,250 ft) at its center and an elevation of about 
2,285 m (7,500 ft) at its edge. Despite PRISM’s widespread use and 
documented data quality (Spangler et al. 2019), the higher resolution 
(800- x 800-m) PRISM dataset likely would have provided a better 
assessment of the influence of moisture stress. The financial resources 
needed to acquire the higher resolution PRISM data were not available. 

Cluster membership was most strongly associated with fire exposure 

and severity. Insect outbreaks and drought were not associated with 
cluster membership. Notwithstanding the potential effects of the coarse 
resolution of the climatic data used, our results are consistent with field 
observations of potential forest conversion. Several case studies of 
management activities aimed at addressing potential forest conversion 
cite fire as the main agent of vegetation change (Guiterman et al. 2022). 
Observations by Guiterman et al. (2022) are consistent with observa-
tions reported in many of the field-based studies we cite, which also 
often point out the importance of post-fire moisture availability to re-
covery (e.g., Chambers et al. 2016; Collins and Roller 2013; Haffey et al. 
2018; Harvey et al. 2016; Rodman et al. 2020; Shive et al. 2013; Stod-
dard et al. 2018). The IDS data itself indicated a limited association with 
potential forest conversion (i.e., cluster membership) because only 15 % 
of persistent forest loss locations coincided with pest infestations and the 
average area of the 2002 – 2004 outbreaks was only about 3 ha. Addi-
tionally, much of the available literature suggests forests recover from 
pest infestations, although relative canopy composition may change 
somewhat (Collins et al. 2011; Négron and Cain 2019; Pelz et al. 2018). 

TCC and fs7 were included in the dataset because they can be used as 
ecological surrogates for distance to a seed source. Existence of proximal 
seed sources is perhaps the most often cited factor promoting forest re- 
establishment (Korb et al. 2019; Steven-Rumann and Morgan 2019). Use 
of TCC and Fs7 together is an example of a weight-of-evidence approach, 
which is often applied in risk assessment (Linkov et al. 2009). Profes-
sional judgement may ascribe greater likelihood of potential forest 
conversion to those locations where Fs7 was zero (0) and TCC was 
effectively zero (0) than locations where neither criteria or just one was 
met. 

3.6. Summary and conclusion 

We estimated an upper bound of the area of potential forest con-
version to be 3,467 km2. Others have raised concern regarding the po-
tential effects of changing disturbance regimes (Abatzoglou et al. 2017; 
Allen et al. 2015; Coop et al. 2020; Halofsky et al. 2020), estimated 
disturbance extent (Hicke et al. 2016), and summarized factors that 
promote recovery following disturbance (Korb et al. 2019; Stevens- 
Rumann and Morgan 2019). To our knowledge, this is the first 
attempt to estimate the areal extent of potential forest conversion. The 
estimate is cognizant of measurement error and ecological context (i.e., 
upper bound) and uncertainties related to determination of successional 
outcomes (i.e., potential). Concern over adverse ecological effects of 
changing disturbance regimes highlights that additional monitoring 
would be beneficial. Our results indicated that NLCD (Homer et al. 2020; 
Yang et al. 2018), other allied datasets (Wickham et al. 2014), and 
additional geographic data, as used here, are useful for monitoring po-
tential forest conversion. Future releases of NLCD can be used to extend 
the time span reported herein. The approach used herein can be applied 
to all locations that have a time series of land cover data. 

4. Data availability 

Data are posted as a csv-formated file on EPA’s Environmental 
Dataset Gateway (https://gaftp.epa.gov/EPADataCommons/ORD/Env 
iroAtlas/PotentialForestConversionNLCD2016.zip). The X,Y co-
ordinates in the csv file can be used to reconstitute in a GIS. The co-
ordinates are based on the USA Contiguous Albers Equal Area Conic 
USGS projection (WKID = 102039). 
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and advised on statistical analyses. KH advised on data quality analysis 
and wrote and edited the paper. MN advised on statistical analyses. JD 
and SJ recommended ancillary data and advised on analytical consid-
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Table 5 
Proportion of cluster area occupied by LANDFIRE (LF) vegetation system 
groups.1     

Cluster2 

LF 
Code3 

Description4 P5 1 2 3 4 

631 PIPO F, W, S 0.158 0.027 0.194 0.175 0.113 
625 PSME-PIPO-PICO F, W 0.137 0.146 0.164 0.121 0.133 
639 Spruce-Fir F,W 0.095 0.045 0.095 0.091 0.116 
626 CA Mixed Evergreen F, 

W 
0.079 0.445 0.079 0.054 0.033 

643 PSME-ABAL-ABCO F, 
W 

0.074 0.067 0.064 0.071 0.095 

630 Pinon-Juniper W 0.066 0.004 0.076 0.088 0.023 
614 PSME F, W 0.064 0.017 0.056 0.066 0.080 
615 PSME-TSHE F, W 0.060 0.024 0.017 0.058 0.129 
610 Conifer-Oak F, W 0.047 0.034 0.039 0.039 0.012 
622 Juniper W 0.028 0.014 0.032 0.025 0.031 
640 Subalpine W, P 0.024 0.013 0.041 0.020 0.011 
629 Western Oak W, S 0.020 0.012 0.011 0.026 0.022 
603 Aspen Mixed Conifer F, 

W 
0.020 0.004 0.019 0.020 0.025 

635 Western riparian W, Sh 0.019 0.005 0.016 0.021 0.021 
999 NLCD land cover6 0.015 0.022 0.008 0.012 0.024 
696 Juniper-oak 0.014 0.001 0.015 0.021 0.004 
645 Western Red-cedar F 0.014 0.051 0.018 0.007 0.011 

1 LF vegetation system group = attribute LF_EVTr in Table 1; 2 Proportions are 
based on cluster area; 3 LF classes shown comprise 92 % of all persistent forest 
loss locations; 4F = forest; W = woodland; S = savanna; P = parkland; Sh =
shrubland; PSME = Douglas fir (Pseudotsuga menziesii); PIPO = ponderosa pine 
(Pinus ponderosa); TSHE = western hemlock (Tsuga heterophylla); PICO =
lodgepole pine (Pinus contorta); ABAL = silver fir (Abies alba); ABCO = white fir 
(Abies concolor); 5 proportion of persistent forest loss (i.e., all clusters); 6 LF 
assigned NLCD land cover to areas that could not be confidently labeled as a 
designated vegetation class. 

Table 6 
Area estimates of potential forest conversion from classification (A) and adjusted 
using indicators in ancillary dataset (C).  

Assumption (A) & Criteria (C) Area (km2) 

A: Potential forest conversion (clusters 1 & 2) 3,467 
C: Potential forest conversion & TCC ≤ 9a 2,188 
C: Potential forest conversion & TCC ≤ 9a & fs7 = 0 642  

a Use of TCC ≤ 9 % rather than TCC = 0 % is explained in supplement in-
formation section. 
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Shive, K.L., Sieg, C.H., Fulé, P.Z., 2013. Pre-wildfire management treatments interact 
with fire severity to have lasting effects on post-wildfire vegetation response. For. 
Ecol. Manage. 297, 75–83. https://doi.org/10.1016/j.foreco.2013.02.021. 

Spangler, K.R., Weinberger, K.R., Wellenius, G.A., 2019. Suitability of gridded climate 
datasets for use in environmental epidemiology. J. Eposure Sci. Environ. Epidemiol. 
29, 777–789. https://doi.org/10.1038/s41370-018-0105-2. 

Stevens-Rumann, C.S., Morgan, P., 2019. Tree regeneration following wildfires in the 
western US: a review. Fire Ecol. 15, 15. https://doi.org/10.1186/s42408-019-0032- 
1. 

Stevens-Rumann, C.S., Kemp, K.B., Higuera, P.E., Harvey, B.J., Rother, M.T., Donato, D. 
C., Morgan, P., Veblen, T.T., 2018. Evidence for declining forest resilience to wildfire 
under climate change. Ecol. Lett. 21, 243–252. https://doi.org/10.1111/ele.12889. 
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