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Abstract Effective surveillance is critical to man-

aging biological invasions via early detection and

eradication. The efficiency of surveillance systems

may be affected by the spatial arrangement of sample

locations. We investigate how the spatial arrangement

of sample points, ranging from random to fixed grid

arrangements, affects the probability of detecting a

target population (survey sensitivity) and the overall

cost of detecting and eradicating populations invading

over time. For single period surveys, regular sampling

patterns outperform the equivalent number of random

samples at intermediate sample densities, but only

when sample sensitivity is high. Otherwise, sample

point arrangement has little effect on survey

sensitivity, which can be modelled reasonably accu-

rately using a Poisson approximation. For multiple

period surveys, we find little difference in the costs of

sample point arrangements for most combinations of

parameters tested. However, the costs of different

arrangements vary when sampling methods have

higher sensitivity and trap densities are low, a situation

representative of many real surveillance programs. In

particular, our results suggest that dynamic trapping

arrangements increase the efficiency of detection

when traps are sparse relative to the size of target

populations. Also, for the scenarios we considered

managers may exercise some freedom in allocating

sample point locations. Placing individual traps or

samples in perceived higher probability sites at the

local scale is unlikely to diminish the probability of

detection at the broader scale.Electronic supplementary material The online version of
this article (doi:10.1007/s10530-014-0742-x) contains supple-
mentary material, which is available to authorized users.
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Introduction

Typical sampling programs in ecology aim to estimate

a mean, or some other statistic, for a target population

without focusing on how the population is spatially

distributed (Albert et al. 2010). However, ecologists

are increasingly addressing problems for which it is

necessary to characterize spatial patterns of occupancy

in populations. Such surveillance programs must

carefully consider spatial locations in addition to the

number of sample locations (Andrew and Mapstone

1987; Perry et al. 2002).

The challenge of detecting rare populations is

central to many applied ecological problems such as

confirming presence of an endangered species, detect-

ing a patchily distributed exploitable resource, detect-

ing a recently established invasive pest, or monitoring

for the remnants of populations under eradication

(Nicholson and Barry 1996; Venette et al. 2002;

Chadès et al. 2008; Cacho et al. 2006; Regan et al.

2011). Examples abound of invasive species that

escaped early detection and became so abundant and

widespread that containment and eradication were no

longer possible (Myers et al. 1998). Similar sampling

problems exist for detecting establishment and spread

of infections through a spatially dispersed population

(Hoye et al. 2010) or spatial spread of chemical

contamination in an aquifer seeded at several locations

(Carpenter et al. 2012).

The efficiency of detecting rare targets may be

affected by the spatial arrangement of sampling

locations. When conducting point sampling, our focus

here, previous work and conventional wisdom suggest

that across areas of uniform risk grid designs are more

effective at detecting patchy targets than other spatial

designs (e.g., Barry and Nicholson 1993; Stevens and

Olsen 2004). However, the superiority of a grid design

may be compromised by at least three factors. First,

previous studies that identified the superiority of grids

assumed that a target patch is always detected

whenever it is intersected by a sample point (perfect

sample sensitivity; Barry and Nicholson 1993). How-

ever, this is often not the case. For example, when

target organisms are small, cryptic, and difficult to

observe, the type II error rate (failure to detect when

present) can be relatively high. Sampling mechanisms

may also be imperfect, such as when trapping an

organism depends on fortuitous animal behaviour.

Alternatively, target patches may be ephemeral or

only detectable during limited time periods, such as

for calling birds.

Second, real-world constraints mean that a regular

grid of sample points may not be practically attainable.

For example, some sampling locations may be inac-

cessible because of physical conditions. Such con-

straints create uncertainty about whether imperfect

grid designs compromise the effectiveness of entire

surveillance programs.

Finally, Barry and Nicholson (1993) and others

(e.g. Nicholson and Barry 1996, 2005) employed a

one-time evaluation of survey sensitivity. However,

many surveys extend over multiple time periods and

the probability of detection may change over time. For

example, invading populations may grow and spread

so that their probability of detection increases over

time. In addition, by considering multiple sampling

periods, the probability of detecting target patches

may be affected by locating sample points where these

points were previously absent. Whether and to what

extent this increases the efficiency of a surveillance

program is currently unclear.

In this paper, we explore the effects of spatial

arrangement of samples taken with imperfect sample

sensitivity (probability of an individual sample detect-

ing a target population when present at the sample

point) on survey sensitivity (probability of detecting

one or more target populations present within the

survey area) for rare populations. Although we use

detection of invasive insect pests via pheromone traps

as a model system, our analysis applies more generally

to the spatial design of surveillance systems.

We also evaluate effects of the spatial sample

arrangement on overall costs of a long term program to

detect and eradicate new incursions of an invasive pest

species over time. Early detection is here a key

determinant of the feasibility of its eradication (Lieb-

hold and Tobin 2008; Tobin et al. 2014). However,

exhaustive surveillance, such as inspection of all

locations or by massive deployment of attractive traps,

is seldom practical due to budget limitations and the

vast number of potentially damaging species that

require separate surveillance. In addition, there are
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direct trade-offs between investments in surveillance

and eradication costs (Mehta et al. 2007; Bogich et al.

2008; Epanchin-Niell et al. 2012, 2014). By deploying

too few traps, newly invaded pest populations may

remain undetected until they are large, leading to high

eradication costs (Tobin et al. 2014). Conversely,

deploying more traps than necessary leads to higher

costs of surveillance, but only marginal increases in

the pest detection probability and reductions in

eradication costs.

Recently, there has been substantial progress in

developing methods for balancing the costs of invasive

species detection with costs of post-detection eradica-

tion. However, these studies have not addressed the

spatial arrangement of trap locations; they have either

quantified the detection costs and probabilities phe-

nomenologically (Mehta et al. 2007; Hauser and

McCarthy 2009; Regan et al. 2011) or assumed random

trap location (Bogich et al. 2008; Epanchin-Niell et al.

2012, 2014). While these approaches capture the

essence of the detection-eradication trade-off, it is

important to evaluate the cost-effectiveness of spatial

arrangements of sample points other than random

placement, especially since the latter is rarely used in

biosecurity operations (Marsh and Trenham 2008).

Design of efficient surveys for biosecurity surveil-

lance programmes must allocate samples through

time, in addition to stratifying samples through space.

We address the problem of early detection of new

invasions in a homogeneous region by evaluating the

effects of spatial sample arrangement under two

scenarios. In Problem 1 we compare various arrange-

ments of sample points deployed over a single

sampling period; in Problem 2 we consider a multi-

temporal surveillance problem in which new popula-

tions establish, undetected populations grow, and

sampling is stratified across time. In both cases, we

assume that the location of the target population centre

is static and that there is a uniform risk of population

establishment across the entire spatial domain. As a

practical illustration, we parameterise our models

using data on invading populations of the gypsy moth

Lymantria dispar (L.) in North America (Liebhold and

Tobin 2006), noting that in practice gypsy moth

surveillance traps are often deployed in square grids

(Roberts and Ziegler 2007). However, we also conduct

an extensive sensitivity analysis so as to cover a wide

range of potential invasive species. We show that in

most situations, spatial sample arrangement has

relatively little effect on survey sensitivity, and survey

sensitivity can be modelled reasonably accurately

using a Poisson approximation (Problem 1). Similarly,

we find relatively little difference in the cost-effi-

ciency of different trap arrangements for the specific

application of detecting and eradicating invasions over

multiple time periods; however, the costs of different

arrangements vary when sampling methods have high

sensitivity and trap densities are low (Problem 2).

Materials and methods

Problem 1: Effects of sample arrangement

on survey sensitivity over a single sampling period

This model considers samples as discrete points in

space that may detect a homogeneous population of a

given radius; any sample that falls within the circular

area occupied by the target population has some

probability of detecting it. This framework was used in

many previous studies (Barry and Nicholson 1993;

Mehta et al. 2007; Bogich et al. 2008; Epanchin-Niell

et al. 2012, 2014). However, our implementation

differs in that we allow for imperfect sample sensitiv-

ity and investigate a variety of sample arrangements.

Formally, n samples (e.g. insect traps) are modelled

as discrete points located within a square region of

area A. The target population is modelled as a single

circular, continuously occupied area of a radius

r located at random completely within the region.

Each sample that lies within the occupied area has a

Table 1 Parameters and variables for Problem 1

Symbol Meaning

A Total area sampled (square region)

r Radius of the circular area occupied by the

population

n Total number of samples

d Sample spacing (for regular grids only)

D Relative sample density (expected number

of randomly distributed samples

intersecting the population) = npr2/A

s Sample sensitivity (probability of a sample

lying within the population area

detecting the population)

P Survey sensitivity (probability of detecting

a population by at least one sample)
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probability s of detecting the population (sample

sensitivity), and we are interested in the survey

sensitivity P, which is the probability that the popu-

lation will be detected by at least one sample. These

and other model parameters and variables are sum-

marized in Table 1.

Stochastic simulations were conducted in Matlab

(R2009b, The MathWorks, Inc.). Survey sensitivity

was estimated as the proportion of 10,000 stochastic

simulations in which at least one sample detected the

population. We also calculated the 95 % Wilson score

confidence intervals for the estimated proportions. We

ran these simulations for a range of parameter values

and the following spatial arrangements of sample

points. Where possible, we also calculated survey

sensitivity analytically and compared the simulation

and analytical results to validate the simulations.

Random sample arrangement

The probability that a randomly placed sample will lie

within the population area is pr2/A, so the probability

that a random sample would detect the population is

spr2/A. Given n such sample points, the probability of

detecting the population by one or more samples is

P = 1 - (1 - spr2/A)n, which for large n and small

spr2/A can be approximated by the zero term of the

Poisson distribution as

P ¼ 1� expð�nspr2=AÞ ¼ 1� exp �sDð Þ ð1Þ

where D = npr2/A is the expected number of sample

points intersecting the population.

Samples arranged as a square grid

Here we consider a square grid, with sample points

located at the vertices of a tessellation of squares (or

equivalently at the centres of tessellated squares). For

this arrangement, an analytical solution for survey

sensitivity may be derived by geometry when sample

sensitivity is s = 1 (Barry and Nicholson 1993).

Denoting the nearest neighbour spacing between

samples as d, the mean sample density is n/A =

1/d2, the relative sample density (Table 1) is D =

p(r/d)2 and

A sub-random sample arrangement

Samples may also be deployed in various sub-random

arrangements, intermediate between random and grid

arrangements. For example, in North American gypsy

moth surveillance programs, placement of traps in

certain locations, such as extremely steep, swampy, or

densely vegetated areas may be impractical. Rather

than using precise grid vertices, trappers may place

traps anywhere within target circles around each

vertex, with radius equal to 30 % of the inter-trap

distance d (Roberts and Ziegler 2007). The target

circles facilitate trap placement while maintaining

integrity of the trapping grid. We modelled this

strategy as a fuzzy grid: samples are placed randomly

within distance equal to 0.3 9 inter-sample distance

of the sample locations specified with a square grid.

The various configurations we consider here are

depicted in Fig. 1.

Problem 2: Effects of sample arrangement on pest

management costs over multiple sampling periods

Here we address a multi-temporal variant of the

previous problem. Specifically, we evaluate the effects

of trap arrangement on overall costs of a program to

detect and eradicate an invasive pest species over an

infinite time horizon. New local populations can
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establish each year, detected populations are immedi-

ately eradicated, and undetected populations grow in

each time period. Focusing on overall managements

costs (including costs of eradication) as the measure of

surveillance efficiency is more relevant here than a

measure of detection probability.

For this we modified a generic, age-structured

model of pest population dynamics (Epanchin-Niell

et al. 2012). At the beginning of year t, any population

can be in one of L age classes. During year t, these

populations can be detected by traps spatially distrib-

uted over a square region of area A. We assume that

populations are detected using the same logic as in

Problem 1 and are eradicated immediately upon

detection. Moreover, new populations can establish

each year at the region-wide rate b, meaning that the

actual number of new populations that establish during

year t is Poisson distributed with mean and variance

b. We assume that b is independent of the size and

number of infestations already present in the region;

this is the most likely scenario when an originally

unaffected area is repeatedly invaded by an alien

species and we aim to detect and eradicate such

species as soon as possible. The parameter b thus

represents immigration rate and we use b = 1 as our

baseline value. Centres of these new populations are

located randomly in space. We do not impose any

specific rules if a centre falls within the area of an

existing population, very close to an existing popula-

tion, or close to the edge of the study area, since A was

sufficiently large that these events were extremely rare

and did not affect our results.

If a population stays undetected during year t, it

continues to grow. Here we distinguish two different

scenarios. First, we model a species that demonstrates

a strong demographic Allee effect so that the radial

growth rate of such populations accelerates until

reaching an asymptotic radial growth rate (Veit and

Fig. 1 Schematic

representation of sample

arrangements used in this

study. The alternative

arrangements are a random,

b square grid, c fuzzy grid.

Filled dots indicate example

trap locations. In d, some

variables used in Eqs. (1)

and (2) and listed in Table 1

are visualized: the shaded

circle represents a

population of radius r,

located in an arena of area

A in which traps are

arranged in a square grid of

inter-node distance d
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Lewis 1996). Therefore, the annual change in the

radius of a circular population range is a sigmoid

function:

r jþ 1ð Þ ¼ r jð Þ þ gjm

hm þ jm
ð3Þ

where r(j) is the radius of a j-year-old population, g is

the asymptotic radial growth rate, h is the population

age at which half that asymptotic rate is reached, and

m is a shape parameter. We assume that r(0) = 0, so

that newly established populations have negligible

spatial extent. Equation (3) implies that the population

radius grows slowly at first, then accelerates around

the age of h and approaches an asymptotic rate of

spread g in older populations. We initially use

g = 1.5, h = 5, and m = 5, as it reflects the radial

growth rate of the invasive gypsy moth populations

(Epanchin-Niell et al. 2012), which demonstrate a

strong Allee effect (Tobin et al. 2009). For species not

subject to strong demographic Allee effects we

assume that the population radius grows at a constant

rate by assuming m = 0 in Eq. (3) and doubling the

value of g to get the same asymptotic rate for both

scenarios. We believe that these models capture the

early spread patterns of a wide range of potentially

invading species; this generality is further enhanced

by the sensitivity analysis described later in this

section.

Using Matlab (R2009b, The MathWorks, Inc.), we

simulated our age-structured model across a region of

area A = 100 km 9 100 km. We used a variety of

spatial trap arrangements, including random trap

placement and several variants of the square grid

design. For the latter, the region was divided into

equal-sized squares, with one trap positioned in each

square as follows:

• Fixed grid—one trap located at the centre of each

square,

• Fuzzy grid—traps placed randomly within dis-

tance equal to 0.3 9 inter-trap distance of the trap

locations specified with the square grid,

• Alternating grid—traps placed as with the square

grid but shifted by half the distance of the side of

the grid square in both directions and back in

alternating years,

• Wobbling grid—traps placed as with the square

grid but the whole grid shifted at random within the

region in each year (ensuring that all traps remain

located within the region).

While the first two grid-like patterns were also used

in Problem 1, the latter two are only applicable for

multi-period sampling. The potential advantage of

their dynamic character is that the change in sample

locations between sampling periods may increase the

chance of intersecting a growing local population. We

note that the random arrangement is actually also

dynamic because traps are re-randomized each year.

For all grid-like arrangements, the number of equal-

sized squares was calculated as
ffiffiffi

n
p
½ �2 where n is the

number of traps to be deployed and [X] denotes the

whole part of a real number X; the remaining

n�
ffiffiffi

n
p
½ �2traps were placed randomly within the

region.

The efficiency of a surveillance method (trap

number plus trap arrangement) is based on the total

costs of detecting (surveillance cost) and removing

(eradication cost) populations (Epanchin-Niell et al.

2012). Letting cs be the trapping cost (USD per trap),

the annual surveillance cost is csn. Letting ce be the

constant marginal cost of eradicating a detected

population (USD km-2), the cost of removing a

population of age j with area a(j) = p r(j)2 is cea(j)

and the cost of eradicating populations detected in year

t is
PL

j¼1 ceaðjÞwjðtÞ, where wj(t) is the number of

populations of age j detected in year t. For the gypsy

moth, Epanchin-Niell et al. (2012) estimated

cs = $47.78 USD per trap and ce = $29,357 USD

per km2, so we use cs = $50 USD per trap and

ce = $30,000 USD per km2 as our initial values, and

vary them in our sensitivity analysis.

We also consider the ‘penalty cost’ of

cfail = $60,000,000 USD for all populations which

are not detected by L years of age (Epanchin-Niell

et al. 2012). This value roughly corresponds to the cost

of eradicating a population of age L growing at a

constant radial rate, and twice the cost of eradicating a

population of age L growing at a sigmoid radial rate.

However, as we will show, the precise value of cfail has

little effect on the efficiency of different surveillance

methods, so long as it is sufficiently large (as is

expected to be the case). Once the penalty cost is

incurred for a population of age L, that population is

formally removed from the region so that we do not

count the penalty cost repeatedly. Every year, the sum
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of the cost of eradicating detected populations and the

penalty cost is referred to as the (total) eradication

cost, and the sum of the surveillance and eradication

costs as the (total) management cost.

We assume that an equal number of traps is

deployed each year according to a fixed annual

surveillance budget B so that n = [B/cs] traps are

deployed annually. While we assume a fixed value of

B, eradication expenditures were incurred as required.

This is common for many budgeting situations,

because surveillance is typically an ongoing activity

while eradication costs are incurred only sporadically

on detection. In addition, funds for surveillance

frequently come from budget sources that are different

from those used for eradication (Monke 2004). Model

parameters and variables pertinent to Problem 2 are

summarized in Table 2.

After some time, system dynamics reach a (sto-

chastic) equilibrium state. We evaluate how the

average annual eradication and management costs

for the equilibrium state change with surveillance

budget, trap arrangement and trap sensitivity. For each

sampling scenario, we run the system for 600 years,

exclude the initial 100 years to avoid any transients,

and calculate the mean and the associated 95 %

confidence interval of the annual eradication and

management costs over the remaining 500 years. The

system is ergodic, such that all simulations are equally

representative of the true distribution. Thus, we do not

need to carry out replicate simulations. Also, because

our evaluation is based upon equilibrium dynamics, it

is not necessary to discount costs to a common point in

time.

Results

Problem 1

Figure 2 shows the survey sensitivity for varying

sample densities for perfect sample sensitivity (s = 1;

Fig. 2a) and for low sample sensitivity (s = 0.2;

Fig. 2b). The grid arrangements resulted in higher

probabilities of detecting the population (i.e. greater

survey sensitivities) than the random arrangement

(Fig. 2). The fuzzy grid sampling resulted in survey

sensitivities intermediate between random and fixed

grid samplings (Fig. 2). The effect of sample arrange-

ment was greatest at high sample sensitivities s and

intermediate relative sample densities D (Fig. 2a).

However, when the sample sensitivity s was low or the

relative sample density D was low or high, sample

arrangement had minimal effect on the results, with all

cases being closely predicted by the Poisson formula

(Fig. 2). Specifically, for s = 1 the maximum distance

between the Poisson approximation and the results for

the fixed grid arrangement was about 0.27 for our

parameter values, whereas it was less than 0.1 for

s \ 0.5 and less than 0.05 for s \ 0.2.

Problem 2

We start by presenting the results for the baseline

parameter values specified in Table 2, for populations

whose annual change in range radius is either constant

or grows sigmoidally with age. We then conduct a

Table 2 Parameters and variables for Problem 2

Symbol Meaning Baseline value and

unit

wj (t) Number of local populations of

age class j detected and

eradicated during year t

L Maximum age class 17 years

s Trap sensitivity

a (j) Area occupied by j-year-old

local population

km2

g Asymptotic radial growth rate 1.5 km/year-1

h Population age at which half

the asymptotic radial growth

rate is reached

5 years

m Shape parameter of the

asymptotic radial growth rate

5

A Area of the considered region 100 km 9 100 km

n Total number of traps deployed

each year

B Fixed annual monitoring

budget

USD

b Time-independent

establishment rate of local

populations

1 year-1

cs Trapping cost $50 USD per trap

ce Marginal cost of eradicating a

detected local population

$30,000 USD per

km2

cfail Cost associated with failing to

detect and eradicate a local

population within time

L following establishment

$60,000,000 USD
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sensitivity analysis of the impacts of varying certain

model parameters.

To ensure 100 % detection of all 1-year-old

populations governed by the baseline parameter

values (with radius of about 0.5 m) with a square grid

and 100 % trap sensitivity (s = 1), traps would need

to be deployed so that the inter-trap distance is close to

0.7 m. This actually follows from Eq. 2: for 100 %

detection when sample sensitivity is perfect, trap

spacing should be
ffiffiffi

2
p

times the population radius. For

a 100 km 9 100 km region this corresponds to nearly

22 9 109 traps and surveillance cost of about $1012

USD every year. This level of monitoring effort is

obviously unrealistic. Fortunately, a strong demo-

graphic Allee effect exists in this system that limits

initial population growth, such that costs increase

relatively slowly with delay in colony detection. For

comparison, to ensure 100 % detection of all 5-year-

old populations (with a predicted radius of about

1.25 km) with a square grid and perfect trap sensitivity

(s = 1), traps would need to be deployed so that the

inter-trap distance is about 1.8 km. For a

100 km 9 100 km region this corresponds to 3,136

traps and surveillance cost of $156,800 USD every

year, a much more realistic investment.

To explore the effect of annual surveillance budget

around this level, we consider B = $10,000 USD,

$100,000 USD and $1,000,000 USD. Based on the

trapping cost cs = $50 USD these budgets correspond

to deploying 200, 2,000 and 20,000 traps, respectively,

at densities 0.02, 0.2 and 2 traps per km2, respectively.

As expected, the annual eradication cost was affected

by the surveillance budget B and trap sensitivity s. In

particular, the annual eradication cost decreased with

increasing trap sensitivity (Fig. 3) and increasing

surveillance budget (Fig. 4). Somewhat surprisingly,

trap arrangement played only a negligible role.

Technically, the random trap arrangement was the

most costly and the alternating grid arrangement

appeared to be the least costly, but the differences

between these two trap arrangements were minor,

though greatest at high trap sensitivities (Fig. 3) and

low surveillance budgets (Fig. 4). In addition, any

small differences in the annual eradication cost

between trap arrangements declined with decreasing

trap sensitivity (Fig. 3) and increasing surveillance

budget (Fig. 4). The results were unaffected by the

way the population radius grows; that is, the results are

robust to whether the species is subject to a strong

demographic Allee effect (m = 5) or not (m = 0).

Overall, for the baseline parameter values, our model

suggests that the choice of trap arrangement, among

those considered here, has little to no influence on the

costs of a long term management program for early

detection and eradication of invasive species

incursions.

However, our sensitivity analysis suggests that

this is not universally so (Electronic Supplementary
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Fig. 2 Results for Problem 1. Sample sensitivity is set to

a s = 1 and b s = 0.2. Each point represents survey sensitivity

obtained from 10,000 simulations. For random sampling, results

are shown for both the analytical Poisson approximation (Eq. 1)

and simulations (random). For the square grid sample arrange-

ment with perfect sample sensitivity (s = 1) both the simulated

and analytical (Eq. 2) results are presented. For each simulated

scenario the 95 % Wilson score CI is\0.01
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Fig. 3 Annual eradication costs (including penalty costs) as a

function of the surveillance budget, trap location arrangement,

trap sensitivity, and the presence (a–c, m = 5) or absence (d–f,
m = 0) of an Allee effect. The alternative surveillance budget

values are a, d B = $10,000 USD, b, e B = $100,000 USD, c,

f B = $1,000,000 USD. The various curves are plotted with a

horizontal offset with respect to each other, so that vertical bars

corresponding to each curve are more easily seen; the curves

represent means, the vertical bars represent 95 % CI for the

means. Results are based on 500 simulated years. Note different

scales for y-axes of different panels. Other parameters are as in

Table 2
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Material). The effect of the asymptotic radial spread

rate g is perhaps the most interesting. With high

spread rate the random trap arrangement is by far

the least efficient, even for relatively high surveil-

lance budgets; the other trap arrangements are

comparable in performance. At intermediate spread

rates and even at relatively low surveillance budgets

all trap arrangements behave roughly equally, with

the alternating grid apparently the most efficient.

Finally, for low spread rates and relatively low

surveillance budgets the fixed grid trap arrangement

is by far the least efficient, while the random trap

arrangement is among the most efficient ones,

especially at high trapping cost cs. Indeed, for the

lowest spread rates examined, the fixed grid

arrangement deviates much more from the other

arrangements for cs = 200 than for cs = 50, which

corresponds to one fourth the trap density. Other-

wise, the effect of the trapping cost cs is largely

quantitative, with differences in management costs

among trap arrangements tending to increase with

higher trapping cost and lower surveillance budget

(which both correspond to lower trap densities). The

other tested parameters, the population establish-

ment rate b and the eradication costs ce and cfail

appear to influence only the magnitude of
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Fig. 4 Annual overall management costs as a function of the

surveillance budget, trap location arrangement, trap sensitivity

(s = 1 in a and c, and s = 0.2 in b and d), and the presence (a, b,

m = 5) or absence (c, d, m = 0) of an Allee effect. The various

curves are plotted with horizontal offsets with respect to each

other, so that vertical bars corresponding to each curve are more

easily seen; the curves represent means, the vertical bars

represent 95 % CI for the means. Results are based on 500

simulated years. Note different scales for y-axes of different

panels. Other parameters are as in Table 2
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management costs but not the efficiency ranking of

the examined trap arrangement patterns.

As trap sensitivity increased, the optimal surveil-

lance budget (hence, divided by cs, the optimal trap

density) decreased (Fig. 4). In addition, the optimal

surveillance budget was (nearly) identical for the

random and grid-like trap arrangements. Interestingly

and perhaps most importantly from the practical point

of view, all curves are relatively shallow around the

optimal surveillance budgets, such that the annual

management costs do not increase markedly with

small deviations from the optimal surveillance budget

and the corresponding optimal surveillance costs vary

little among the considered trap arrangements. For

example, for trap sensitivity s = 0.2, surveillance

budget can range between 100,000 USD and

1,000,000 USD without substantially affecting the

average annual management costs (Fig. 4). Tables 3

and 4 show the optimal numbers of traps correspond-

ing to the minimal average management costs, for the

trapping cost cs = $50 USD and for an Allee effect

(sigmoid radial growth rate, m = 5) and no Allee

effect (constant radial growth rate, m = 0), respec-

tively. These optimal numbers get more variable

among the examined trap arrangements as both the

population establishment rate b and the asymptotic

radial growth rate g increase. Also, for relatively high

values of g we apparently need much less traps when

no Allee effect is present; for relatively low values of

g the optimal numbers of traps are comparable for an

Allee effect and for no Allee effect. However, we

emphasize again that generally the annual manage-

ment costs do not increase markedly with small

deviations from the optimal surveillance budget and

the corresponding optimal surveillance costs vary

little among the considered trap arrangements (Elec-

tronic Supplementary Material).

Discussion

Survey design for detecting rare target organisms or

populations applies across a diversity of ecological

contexts. In our focus, surveillance plays a critical role

Table 3 The optimal numbers of traps for scenarios with the

Allee effect (m = 5) and trapping cost cs = $50 USD

g = 0.5 g = 1.5 g = 3 g = 5

b = 0.5 1,003 1,589 3,170 3,170

1,589 2,000 2,518 2,000

1,262 2,000 3,170 2,000

1,262 2,000 3,170 1,589

1,003 2,000 3,170 2,000

b = 1 2,518 3,170 3,991 3,991

2,000 2,518 3,170 2,000

1,589 2,518 3,991 2,000

1,589 2,000 3,170 1,589

2,000 2,518 3,170 2,000

b = 2 3,170 3,991 6,325 5,024

2,518 2,518 3,991 2,000

2,518 3,170 5,024 2,518

2,000 2,000 3,991 1,589

2,518 2,518 3,991 2,000

The numbers in each cell from top to bottom correspond to

random arrangement, fixed grid, fuzzy grid, alternating grid,

and wobbling grid. The respective optimal budget for

surveillance B is simply cs times the optimal number of

traps. The other parameters are as in Table 2. Full results for

these scenarios are plotted if Fig. 1 of the Electronic

Supplementary Material

Table 4 The optimal numbers of traps for scenarios with no

Allee effect (m = 0) and trapping cost cs = $50 USD

g = 1 g = 3 g = 6 g = 10

b = 0.5 1,262 2,000 1,589 1,262

1,262 2,000 633 797

1,262 1,589 633 317

1,003 1,589 633 252

1,589 2,000 797 797

b = 1 1,589 3,170 2,000 1,003

2,518 2,000 1,262 503

2,000 2,518 633 503

2,518 2,000 1,003 503

2,000 1,589 797 400

b = 2 3,170 3,991 2,518 2,000

3,170 2,000 1,262 797

2,518 2,518 1,262 1,003

2,518 2,000 1,003 797

2,518 2,518 1,589 503

The numbers in each cell from top to bottom correspond to

random arrangement, fixed grid, fuzzy grid, alternating grid,

and wobbling grid. The respective optimal budget for

surveillance B is simply cs times the optimal number of

traps. The other parameters are as in Table 2. Full results for

these scenarios are plotted if Fig. 3 of the Electronic

Supplementary Material
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in efforts to manage biological invasions via early

detection and eradication (Liebhold and Tobin 2008;

Jarrad et al. 2011). The optimization of surveillance

effort is a subject for which several very useful

quantitative approaches have been developed for

increasing the efficiency of biosecurity activities

(e.g., Mehta et al. 2007; Bogich et al. 2008; Hauser

and McCarthy 2009; Epanchin-Niell et al. 2012,

2014). Despite these successes, there has been little

consideration of spatial arrangement of sample points;

most studies simply assumed random sample distri-

bution. In this study, we explicitly model several non-

random spatial sample arrangements and examine

their effectiveness in various surveillance scenarios.

While regular sampling grids generally are thought to

be superior to other sample arrangements (e.g., Barry

and Nicholson 1993; Stevens and Olsen 2004), we

found that the difference in efficiency of spatial

sample arrangements was in many cases small,

especially when employing a sampling method that

was not highly sensitive (e.g. visual surveys for a

cryptic species or traps with poor attractants) or when

having sufficient budget for detailed, multi-period

surveillance for eradicating invasions over time.

When sampling is conducted within a single period

(Problem 1), regular sampling patterns may outper-

form the equivalent number of randomly placed

sample points in some limited situations—specifically

at intermediate sample densities (Fig. 2), but only

when sample sensitivity is high. In most other

situations, spatial arrangement of sample points has

relatively little effect on survey sensitivity, and survey

sensitivity can be modelled reasonably accurately

using a Poisson approximation.

In our analysis of invasive species detection over

time (Problem 2), eradication costs always decrease

with increasing trap sensitivity and increasing sur-

veillance budget. However, total management costs

decrease and then increase with increasing trap

density. We found that trap density (correlated to the

annual surveillance budget) has a much greater effect

on survey sensitivity than spatial arrangement. Indeed,

in many situations we found relatively little difference

in the cost-efficiency of different arrangements for the

specific application to detecting and eradicating

invasions over multiple time periods. For example,

our analysis indicated that there is surprisingly little

benefit to varying sampling positions by shifting

sample grids through time in most situations; the

benefits are greatest when sampling densities are low.

These results suggest that dynamic trapping arrange-

ments increase the efficiency of detection when traps

are sparse relative to the size of target populations in

multi-period sampling.

When employing sampling methods with high

sensitivity, the asymptotic radial growth rate g of

populations also is important for affecting trap

arrangement efficiency: relatively high values of

g lead to the least efficient performance of the random

trap arrangement and comparable efficiency amongst

the other considered arrangements, moderate g’s give

equal efficiency for all arrangements, and low g’s lead

to the least efficient performance of the fixed grid and

comparable efficiency amongst the other arrange-

ments. A possible explanation here is that fast growing

populations will reach a size large enough to likely

intersect traps in a regular grid within a short time,

whereas a random grid has potentially larger unsam-

pled spaces that may allow for longer times to

detection. With a low growth rate the effect may be

just the opposite as populations may take a long time

to grow to reach a distant fixed sample, but could be

intersected sooner by the random traps, since trap

locations in this arrangement change from year to

year.

The cost-efficiency of surveillance and subsequent

eradication is especially sensitive to the choice of

spatial trap arrangement when the annual surveillance

budget B is low and the trapping cost cs is high, since

then trap densities are quite low. Unfortunately, and

quite importantly, this is the case for many invasions

due to limited funds and competing demands. When

population growth rates are particularly small, low

trap densities make the fixed grid arrangement the

least efficient. Given that fixed grids are widely used in

actual surveillance programs, care must be taken in

such cases: adopting a dynamic grid arrangement,

including the random arrangement, is preferable. The

equal performance of the dynamic grid arrangements

and the random arrangement appears here as slightly

counter-intuitive, since if there are large gaps in the

surveillance network under the random arrangement

pattern, there would be significant advantages in

shifting traps from year to year to locations that were

not searched in the previous year. But note that the

random arrangement of traps is also assumed to vary

from year to year, albeit in an unpredictable manner.

Thus, while this dynamic random pattern is inefficient

456 L. Berec et al.

123



if growth rates are sufficiently high, when growth rates

and trap densities are low it is among the most efficient

surveillance strategies.

The fixed grid trap arrangement (including fuzzy

grids) has been the default standard for several large

scale insect surveillance programs (gypsy moth:

Roberts and Ziegler 2007; fruit flies: Quilici and

Donner 2012) and our results support the efficiency of

this arrangement under a range of circumstances. In

addition, our findings suggest that deviations from the

ideal grid, which cannot be practically avoided, do not

appear to substantially reduce the overall efficiency of

the program. The pheromone-baited traps for detect-

ing gypsy moth populations that were considered in

our baseline application are quite sensitive (Schwalbe

1981), but sample sensitivity may be lower for other

target species or for sampling methods that are based

on weaker attractants or visual surveys. In these cases,

adhering to a strict grid arrangement is even less

important.

Obviously, higher trap sensitivity reduces manage-

ment costs, regardless of the actual trap arrangement.

A straightforward implication of this is that expendi-

ture on research and production of sampling devices

(e.g. traps) with high sensitivity may be beneficial, but

once sample sensitivity is sufficiently high, the choice

of sample arrangement may be more important. In

addition, for systems in which it is possible to invest

resources to either increase sample sensitivity (e.g.,

spending more time on each local visual survey) or to

increase sample density, exploring this trade-off may

be worthwhile.

Despite providing a quite detailed model formula-

tion for Problem 2, several features of real manage-

ment programs have not been fully incorporated. For

example, we assume that our spatial region is homo-

geneous in risk of arrival and establishment whereas in

many cases arrival rates or chance of establishment

may vary across space. In this case, we would expect

that our basic findings with respect to sample

arrangements would hold, but that the optimal sample

density would vary based on these differences, as

found by Epanchin-Niell et al. (2012, 2014). In such

situations it may be possible to divide the environment

into areas of approximately homogeneous introduc-

tion risk or habitat preferences, and optimise the

allocation of samples between such areas (Martin et al.

2007); the current models would apply to sample

arrangement within each such area.

We also assumed constant marginal trapping cost,

but this cost is likely to decrease with increasing trap

density because of decreased per-trap travel costs. It is

also likely to vary among trap arrangement patterns

and to depend on topography and road access to sites.

For example, in the Midwestern US, roads are mostly

configured on a rectangular grid and grid-like trapping

arrangements may impose particularly low costs in

these situations. Similarly, trapping arrangements that

allow for trap placement flexibility based on local

conditions (e.g. fuzzy grids) are likely to be less costly

than inflexible trap locations.

Finally, we modelled appearance of new popula-

tions in the target region as immigration (at a constant

rate) from outside source populations. This situation is

representative of the recurrent gypsy moth invasions

to California (Epanchin-Niell et al. 2012), and we

believe it is generally the most likely scenario when

the primary aim is to survey an originally unaffected

area to detect and eradicate a repeatedly invading alien

species at minimal cost. One may argue that our model

is not representative of a scenario where establishment

of new populations results from short-to-medium

distance dispersal from established populations within

the target region. However, we see such short or mid-

range dispersal as drivers of range expansion in our

model, which would accelerate local population

growth making it more important to detect and remove

established populations early. Our model could also

apply to detecting satellite populations establishing

into uninvaded areas via dispersal from known,

established populations, by allowing the optimal

density (rather than arrangement) of traps to vary

across a gradient of establishment rate extending away

from the source population. Given that our results

regarding trap arrangement are unaffected by the way

the population radius grows, that is, they are robust to

whether the species is subject to a strong demographic

Allee effect (m = 5) or not (m = 0), our results are

probably valid for a wide range of potential invaders.

Here we consider strategies for long term surveil-

lance design for early detection of new invasive

species incursion via traps or point samples. Alterna-

tive strategies or spatial arrangements may be appli-

cable for detecting species that lend themselves to

more continuous sampling, such as transects using

visual surveys. For example, Cacho et al. (2006)

employed search theory to evaluate the eradicability of

known weed populations in cases where surveyors use
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visual searches, e.g. transects, to find individual plants

to control. They showed that searching in equidistant

parallel tracks performed better than random (wander-

ing) searches. In later studies, they also considered

passive and active surveillance for controlling a

spreading plant invasion and showed how surveillance

intensity should vary across the landscape to effi-

ciently control the invasion, using search theory to

model search behavior and sensitivity at individual

locations (Cacho et al. 2010; Cacho and Hester 2011;

Hester and Cacho 2012). In contrast, our focus on

spatial arrangement of samples applies to the diverse

range of species or situations that employ traps or

other point sampling methods to survey an area. The

optimal, landscape-wide surveillance strategy for

these situations thus depends on both the optimal

spatial arrangement of samples and the intensity of

surveillance, e.g. density of samples across the

landscape.

In conclusion, we addressed the issue of whether

different sample point arrangements might result in

either significantly different survey sensitivities over

single sampling periods (Problem 1) or markedly

different costs of detecting and eradicating steadily

invading populations (Problem 2). For the scenarios

we considered we showed that under most circum-

stances there was generally little benefit from pedan-

tically adhering to a specific pattern in sample point

locations. This is good news for natural resource

managers deploying traps for surveillance of invasive

pests or depending on volunteers for sample place-

ment. Indeed, managers can exploit the freedom to

place individual traps or samples into preferred

locations to maximize the probability of detection at

a local scale, secure in the knowledge that this is

unlikely to diminish the probability of detection at the

broader scale. On the other hand, if the annual

surveillance budget is limited and surveillance costs

are high, which is the case in many real surveillance

programs, a particular strategy might underperform

others and some care then needs to be taken. In any

case, modelling studies such as ours can provide a

rigorous basis for optimizing surveillance and eradi-

cation programs against an increasing number of

invasive pests.
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