Assessing Forest Tree Genetic Risk across the Southern Appalachians: A Tool for Conservation Decision-Making in Changing Times

Kevin M. Potter
Barbara S. Crane
IUFRO Landscape Ecology Working Group International Conference

Bragança, Portugal
September 23, 2010

Outline

1) Overview of potential genetic effects of climate change on forest trees
2) Need for regional genetic risk assessments of multiple forest tree species
3) Description of the study region: Southern Appalachian Mountains of the Southeastern United States
4) Description of the genetic risk assessment and the risk factors included
5) Assessment results and next steps

Global Warming Predictions

Robert A. Rohde (http://en.wikipedia.org/wiki/Instrumental_temperature_record)

Eastern Forest Threat Assessment Center, Research Triangle Park, N.C.

A globally coherent fingerprint of climate change impacts across natural systems

Camille Parmesan ${ }^{*}$ \& Gary Yohe \dagger

* Integrative Biology, Patterson Laboratories 141, University of Texas, Austin, Texas 78712, USA
\dagger Yohn E. Andrus Professor of Economics, Wesleyan University, 238 Public Affairs Center, Middletown, Connecticut 06459, USA
"Global meta-analyses documented significant range shifts averaging 6.1 km per decade toward the poles (or meters per decade upward), and significant mean advancement of spring events by 2.3 days per decade. ...
"This suite of analyses generates very high confidence ... that climate change is already affecting living systems."

Contents lists available at ScienceDirect
Forest Ecology and Management

Fig. 2. Little's (1971) species ranges and plot locations for seedlings and tree biomass based on FIA data for selected species (a - tamarack, b - sugar maple, c - northern pin oak, d - shortleaf pine, e -southern magnolia, and f - sweetbay). Additionally, the mean latitude of tree seedlings and biomass based on FIA data are depicted.

Extinction risk from climate change

Chris D. Thomas ${ }^{1}$, Alison Cameron ${ }^{1}$, Rhys E. Green ${ }^{2}$, Michel Bakkenes ${ }^{3}$, Linda J. Beaumont ${ }^{4}$, Yvonne C. Collingham ${ }^{5}$, Barend F. N. Erasmus ${ }^{6}$, Marinez Ferreira de Siqueira ${ }^{7}$, Alan Grainger ${ }^{8}$, Lee Hannah ${ }^{9}$, Lesley Hughes ${ }^{4}$, Brian Huntley, Albert S. van Jaarsveld ${ }^{10}$, Guy F. Midgley ${ }^{11}$, Lera Miles ${ }^{8 *}$, Miguel A. Ortega-Huerta ${ }^{12}$, A. Townsend Peterson ${ }^{13}$, Oliver L. Phillips ${ }^{8}$ \& Stephen E. Williams ${ }^{14}$
${ }^{1}$ Centre for Biodiversity and Conservation, School of Biology, University of Leeds, Leeds LS2 9JT, UK
${ }^{2}$ Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire SG19 2DL, UK, and Conservation Biology Group, Department of Zoology,
University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
${ }^{3}$ National Institute of Public Health and Environment, P.O. Box 1,
3720 BA Bilthoven, The Netherlands
${ }^{4}$ Department of Biological Sciences, Macquarie University, North Ryde, 2109,
NSW, Australia
${ }^{5}$ University of Durham, School of Biological and Biomedical Sciences, South Road, Durham DH1 3LE, UK
${ }^{6}$ Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa
${ }^{7}$ Centro de Referência em Informação Ambiental, Av. Romeu Tórtima 228,
Barão Geraldo, CEP:13083-885, Campinas, SP, Brazil
${ }^{8}$ School of Geography, University of Leeds, Leeds LS2 9JT, UK
${ }^{9}$ Center for Applied Biodiversity Science, Conservation International, 1919 M Street NW, Washington, DC 20036, USA
${ }^{10}$ Department of Zoology, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa
${ }^{11}$ Climate Change Research Group, Kirstenbosch Research Centre, National
Botanical Institute, Private Bag x7, Claremont 7735, Cape Town, South Africa
${ }^{12}$ Unidad Occidente, Instituto de Biologia, Universidad Nacional Autónoma de México, México, D.F. 04510 México
${ }^{13}$ Natural History Museum and Biodiversity Research Center, University of
Kansas, Lawrence, Kansas 66045 USA
> "[W]e predict, on the basis of mid-range climatewarming scenarios for 2050, that 15-37\% of species in our samples of regions and taxa will be committed to exctinction."

Tree responses to climate change

1) Toleration/adaptation

2) Shifting range
3) Population extirpation

All could have negative genetic consequences

Potential genetic consequences

1) Toleration/adaptation

- Strong selection could reduce genetic variation

2) Shifting range

- Founder effects, loss of trailing edge populations

3) Population extirpation

Potential loss of unique genes and novel gene combinations

Why do we care about genetics?

- Genetic variation = evolutionary potential to adapt to change
- Genetic degradation may increase susceptibility to other stressors (pests, pathogens, changing
 climate, etc.)

Why genetic risk assessment?

- Resources for conservation of forest tree species will be limited
- Funding
- People power
- Time
- Climate change is not the only serious threat
- How do we decide where to invest?

Collecting Fraser fir cones at Mount Rogers, Virginia, for ex situ gene conservation

Regional multi-species assessment

- Needed: tool to prioritize species most at risk of genetic degradation
- Goal: Conserve existing adaptedness and create conditions that allow for future evolution
- Traits and threats specific to species will result in wide variety of responses

Southern Appalachian Mountains

- Highly diverse flora
- More than 140 tree species
- Heavily forested, but impacted by several threats
- Invasive pests and pathogens, fragmentation, air pollution
- Climate change may pose a particular problem

High-elevation hardwood forests, Shenandoah National Park, Virginia

Risk for high-elevation species

- Tendency toward naturally small, isolated and fragmented populations
- Lower genetic diversity and interpopulation gene exchange

Lack of suitable habitat

- Only option may be uphill migration, but...
- Could run out of real estate at the highest elevations

Red spruce-Fraser fir forest, Grandfather Mountain, North Carolina

Southern Appalachian Mountains

Eastern Forest Threat Assessment Center, Research Triangle Park, N.C.

NC STATE UNIVERSITY

Southern Appalachian Mountains

Eastern Forest Threat Assessment Center, Research Triangle Park, N.C.

Southern Appalachian Mountains

High-elevation species

Endemics or near-endemics

Eastern Forest Threat Assessment Center, Research Triangle Park, N.C.

NC STATE UNIVERSITY

Northern species with Southern disjuncts

ay x^{2} -

Eastern Forest Threat Assessment Center, Research Triangle Park, N.C.

Common Southern species

Eastern Forest Threat Assessment Center, Research Triangle Park, N.C.

NC STATE UNIVERSITY

Uncommon Eastern species

Eastern Forest Threat Assessment Center, Research Triangle Park, N.C.

NC STATE UNIVERSITY

Genetic risk assessment methods

1) Literature review to determine attributes predisposing species to genetic risk
2) Identification of relevant data sources
3) Collection of data for 131 Southern Appalachian species
4) Calculation of relative risk across species

- Six intrinsic risk factors, two extrinsic risk factors, and two conservation modifiers
- Scored on a scale of 0 to 100 for each species

Eastern Forest Threat Assessment Center, Research Triangle Park, N.C.

Threats from pests and pathogens (\uparrow)
(Logan et al. 2003)

Predicted stability of

 current habitat (\downarrow)
Extrinsic risk factors

Predicted distance to future suitable habitat (\uparrow)
(Parmesan 2006)

Forest fragmentation
 (个)
 (Thomas et al. 2004)

Conservation modifiers

Data availability

- Tree range maps for distributional information
- Forest Inventory and Analysis (FIA) data for rarity and density information

Widely available publications for species life-history traits

- Silvics of North America (Burns and Honakala 1990)
- Woody Seed Plant Manual (Bonner and Karrfalt 2008)
- Fire Effects Information System (Brown and

[^0] Smith 2000)

Tree distribution information

Carolina hemlock (Tsuga

 caroliniana), Linville Falls, North Carolina

Eastern Forest Threat Assessment Center, Research Triangle Park, N.C.

Forest Inventory and Analysis data

Eastern Forest Threat Assessment Center, Research Triangle Park, N.C.

NC STATE UNIVERSITY

Forest Inventory and Analysis data

Table Mountain pine (Pinus pungens), Blue Ridge Parkway, North Carolina

Eastern Forest Threat Assessment Center, Research Triangle Park, N.C.

Digital elevation model

Eastern Forest Threat Assessment Center, Research Triangle Park, N.C.

NC STATE UNIVERSITY

Fragmentation (forest land cover)

Eastern Forest Threat Assessment Center, Research Triangle Park, N.C.

NC STATE UNIVERSITY

Climate change pressure

1) Change over time in area of suitable habitat (Hadley B1, 2050)

- More = higher risk

2) Percent of current habitat that remains suitable

- Less = higher risk

3) Mean distance from current habitat to nearest future habitat

Farther = higher risk

New habitat in 2050

Habitat overlap, now and 2050
Current habitat gone in 2050

Species genetic risk (score 0-100)

$$
\begin{gathered}
\text { Risk }=\left(w_{S} S+w_{D} D+w_{R} R+w_{M} M+w_{A} A+w_{G} G\right) \\
+ \\
\left(w_{P} P+w_{C} C\right) \\
+ \\
\left(w_{E} E+w_{L} L\right)
\end{gathered}
$$

$S, D, R, M, A, G=$ intrinsic risk factors
P, $C=$ extrinsic risk factors
$E, L=$ conservation modifiers

Relativized from 0 to 100, with 100 the highest risk
$w_{x}=$ weights of factors and modifiers (must sum to 1)

Weighting genetic risk factors

Intrinsic factors	Extrinsic factors
Population structure (S)(10\%)	Pest/pathogen threat (P)(15\%)
Density/rarity (D) (10\%)	Climate pressure (C) (15\%)
Regeneration capacity (R)(10\%)	
Dispersal ability (M)(10\%)	
Habitat affinities (A)(10\%)	
Genetic variation $(G)(10 \%)$	

Conservation modifiers:
Endemism (E) (5\%)
Conservation status (L) (5\%)

So. Appalachian species most at risk

Rank	Species	Risk Score
1	Carolina hemlock (Tsuga caroliniana)	63.14
2	September elm (Ulmus serotina)	62.53
3	Fraser fir (Abies fraseri)	54.97
4	Blue ash (Fraxinus quadrangulata)	54.61
5	Butternut (Juglans cinerea)	54.53
6	Shumard oak (Quercus shumardii)	53.84
7	Table Mountain pine (Pinus pungens)	52.77
8	Carolina silverbell (Halesia carolina)	52.59
9	American chestnut (Castanea dentata)	52.49
10	Black ash (Fraxinus nigra)	52.21

So. Appalachian species least at risk

Rank	Species	Risk Score
122	Common serviceberry (Amelanchier arborea)	27.46
123	Northern red oak (Quercus rubra)	27.29
124	American holly (Ilex opaca)	26.49
125	Black cherry (Prunus serotina)	26.43
126	Black oak (Quercus velutina)	26.39
127	Eastern redcedar (Juniperus virginiana)	26.24
128	Red maple (Acer rubrum)	25.94
129	American hophornbeam (Ostrya virginiana)	25.57
130	Black gum (Nyssa sylvatica)	24.50
131	Musclewood (Carpinus caroliniana)	23.70

Western Washington State assessment

- Ranking genetic risk for National Forests and National Parks
- 36 species, sorted into three conservation risk groups
- Ranking risk of species in top group
- Tailored system to specific
 regional needs

Conclusions

1) Climate change, in concert with other threats poses a threat to genetic integrity of forest tree species

- Risk varies based on attributes of species

2) Genetic risk assessment is necessary to efficiently and effectively use conservation resources
3) A risk assessment system for the Southern Appalachians ranks the relative risk of genetic degradation

- System flexible, applicable to different regions and scales

4) Next: population-level assessments within species

Account for interaction among threats, attributes

Population-level risk assessment

- Ponderosa pine (Pinus ponderosa), Eastern hemlock (Tsuga canadensis)
- Species-wide genetic variation using molecular markers
- Will compile as much population-level data as possible
- Interactions of threats and species attributes
- Bayesian Belief Network approach incorporating expert opinion

Thoughts? Please contact me:

 kevinpotter@fs.fed.us

Canaan Valley State Park, West Virginia

Thanks to:

- Funding: U.S. Forest Service Forest Health Monitoring Program
- Development of assessment methodology: Bill Hargrove, Carol Aubry
- Other assistance: Kurt Riitters, Danny Lee, Frank Koch, Barb Conkling, Fred Cubbage
- FIA field crews

[^0]: Eastern hemlock-white pine forest, Linville Gorge, North Carolina

